15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the adaptor protein MamJ, thereby assembling a magnetic dipole much like a compass needle. However, in Magnetospirillum gryphiswaldense, discontinuous chains are still formed in the absence of MamK. Moreover, these fragmented chains persist in a straight conformation indicating undiscovered structural determinants able to accommodate a bar magnet-like magnetoreceptor in a helical bacterium. Here, we identify MamY, a membrane-bound protein that generates a sophisticated mechanical scaffold for magnetosomes. MamY localizes linearly along the positive inner cell curvature (the geodetic cell axis) likely by self-interaction and curvature sensing. In a mamY deletion mutant, magnetosome chains detach from the geodetic axis and fail to accommodate a straight conformation coinciding with reduced cellular magnetic orientation. Co-deletion of mamKY completely abolishes chain formation, whereas upon synthetic tethering of magnetosomes to MamY, the chain configuration is regained, emphasizing the structural properties of the protein. Our results suggest MamY as membrane-anchored mechanical scaffold essential to align the motility axis of magnetotactic spirilla with their magnetic moment vector and to perfectly reconcile magnetoreception with swimming direction.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape

          Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnetosome biogenesis in magnetotactic bacteria.

            Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape

              F. Gittes (1993)
                Bookmark

                Author and article information

                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Science and Business Media LLC
                2058-5276
                July 29 2019
                Article
                10.1038/s41564-019-0512-8
                a702e8c7-3ec7-4c4a-9365-f0da413fbd66
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article