23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Does the endothelium abolish or promote arterial vasomotion in rat mesenteric arteries? Explanations for the seemingly contradictory effects.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vasomotion consists in cyclic oscillations of the arterial diameter induced by the synchronized activity of the smooth muscle cells. So far, contradictory results have emerged in the literature about the role of the endothelium in the onset and maintenance of vasomotion. Here our aim is to understand how the endothelium may either abolish or promote vasomotion.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo.

            1. Three analogues of L-arginine were characterized as inhibitors of endothelial nitric oxide (NO) synthase by measuring their effect on the endothelial NO synthase from porcine aortae, on the vascular tone of rings of rat aorta and on the blood pressure of the anaesthetized rat. 2. NG-monomethyl-L-arginine (L-NMMA), N-iminoethyl-L-ornithine (L-NIO) and NG-nitro-L-arginine methyl ester (L-NAME; all at 0.1-100 microM) caused concentration-dependent inhibition of the Ca2(+)-dependent endothelial NO synthase from porcine aortae. 3. L-NMMA, L-NIO and L-NAME caused an endothelium-dependent contraction and an inhibition of the endothelium-dependent relaxation induced by acetylcholine (ACh) in aortic rings. 4. L-NMMA, L-NIO and L-NAME (0.03-300 mg kg-1, i.v.) induced a dose-dependent increase in mean systemic arterial blood pressure accompanied by bradycardia. 5. L-NMMA, L-NIO and L-NAME (100 mg kg-1, i.v.) inhibited significantly the hypotensive responses to ACh and bradykinin. 6. The increase in blood pressure and bradycardia produced by these compounds were reversed by L-arginine (30-100 mg kg-1, i.v.) in a dose-dependent manner. 7. All of these effects were enantiomer specific. 8. These results indicate that L-NMMA, L-NIO and L-NAME are inhibitors of NO synthase in the vascular endothelium and confirm the important role of NO synthesis in the maintenance of vascular tone and blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vasomotion: mechanisms and physiological importance.

              That smooth muscles dilate and contract rhythmically has been known for a long time and the phenomenon has been studied for nearly as long. However, the causes and effects of smooth muscle oscillation (termed vasomotion) are far from clear. It is thought that vasomotion aids the delivery of oxygen to tissues surrounding capillary beds. On the other hand, unregulated vasomotion might participate in the development and maintenance of pathophysiological states. Nilsson and Aalkjaer review what is known about vasomotion and its consequences.
                Bookmark

                Author and article information

                Journal
                J. Vasc. Res.
                Journal of vascular research
                S. Karger AG
                1423-0135
                1018-1172
                2008
                : 45
                : 5
                Affiliations
                [1 ] Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. dominique.seppey@epfl.ch
                Article
                000124283
                10.1159/000124283
                18401180
                050ceaf2-3393-460c-958f-50709c72c083
                History

                Comments

                Comment on this article