27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: not found

      Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells.

      Nephron. Physiology
      Adaptor Proteins, Signal Transducing, Antigens, CD95, genetics, metabolism, Apoptosis, drug effects, physiology, Carrier Proteins, Cell Line, Fas Ligand Protein, Fas-Associated Death Domain Protein, Flow Cytometry, Humans, In Situ Nick-End Labeling, Interleukin-1, immunology, pharmacology, Kidney Tubules, cytology, Lipopolysaccharides, Membrane Glycoproteins, Poly(ADP-ribose) Polymerases, Proteins, RNA, Messenger, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased susceptibility of the kidney to acute renal failure (ARF) in the setting of sepsis even in the absence of systemic hypotension is well known. In the hypothesis that the proinflammatory cytokines and lipopolysaccharide (LPS) in gram-negative sepsis can directly cause renal tubular cell apoptosis via Fas- and caspase-mediated pathways, we examined apoptosis and Fas, Fas ligand, FADD expression, as well as PARP cleavage in cultured human proximal tubular cells under the cytokine and LPS-stimulated conditions. HK-2 cell, immortalized human proximal tubular cell lines, were treated with 5 and 30 ng/ml of tumor necrosis factor-alpha (TNF-alpha), 5 and 20 ng/ml of interleukin-1beta (IL-1beta) and 30 ng/ml LPS for 24 h. Fas expression was examined by RT-PCR and Fas ligand, Fas-associated protein with death domain (FADD) and poly ADP ribose polymerase (PARP) cleavage were examined by Western blot analysis. Apoptosis was assessed by flow cytometer using Annexin V-FITC and propidium iodide (PI) staining and also by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) methods. Fas mRNA expression (ratio of Fas/L-19) increased in the TNF-alpha 5, 30 ng/ml and LPS treated group (p < 0.01, p < 0.01, p = 0.02), but there was no difference between the low- and high-dose TNF-alpha groups. Fas ligand protein expression did not increase in the low-dose TNF-alpha treated group, but it increased significantly in the high-dose TNF-alpha treated group (p < 0.01), IL-1beta- and LPS-treated groups (p < 0.01, p = 0.01, p < 0.01, p = 0.02). The intracellular adaptor protein, FADD expression also increased significantly in the high-dose TNF-alpha- and IL-beta-treated groups (p = 0.04, p = 0.04), but in the low-dose TNF-alpha and IL-beta treated group, it did not show statistically significant differences. In the LPS group, FADD expression also showed an increased tendency, but it was not statistically significant (p = 0.09). Western blot for PARP, a DNA repair enzyme mainly cleaved by caspase 3, showed increased 89- and 24-kD PARP cleavage products in TNF-alpha, IL-1beta and LPS treated cells. The degree of apoptosis examined by DNA fragmentation and translocation of membrane phosphatidyl serine significantly increased in cytokines and LPS treated groups. These results suggest that Fas- and caspase-mediated apoptosis of tubular cells by inflammatory cytokines and LPS can be one of the possible mechanisms of renal dysfunction in endotoxemia. Copyright 2002 S. Karger AG, Basel

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          An essential role for NF-kappaB in preventing TNF-alpha-induced cell death.

          Studies on mice deficient in nuclear factor kappa B (NF-kappaB) subunits have shown that this transcription factor is important for lymphocyte responses to antigens and cytokine-inducible gene expression. In particular, the RelA (p65) subunit is required for induction of tumor necrosis factor-alpha (TNF-alpha)-dependent genes. Treatment of RelA-deficient (RelA-/-) mouse fibroblasts and macrophages with TNF-alpha resulted in a significant reduction in viability, whereas RelA+/+ cells were unaffected. Cytotoxicity to both cell types was mediated by TNF receptor 1. Reintroduction of RelA into RelA-/- fibroblasts resulted in enhanced survival, demonstrating that the presence of RelA is required for protection from TNF-alpha. These results have implications for the treatment of inflammatory and proliferative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia.

            Bacterial infection of the mammalian bloodstream can lead to overwhelming sepsis, a potentially fatal syndrome of irreversible cardiovascular collapse (shock) and critical organ failure. Cachectin, also known as tumour necrosis factor, is a macrophage-derived peptide hormone released in response to bacterial lipopolysaccharide, and it has been implicated as a principal mediator of endotoxic shock, although its function in bacterial sepsis is not known. Anaesthetized baboons were passively immunized against endogenous cachectin and subsequently infused with an LD100 dose of live Escherichia coli. Control animals (not immunized against cachectin) developed hypotension followed by lethal renal and pulmonary failure. Neutralizing monoclonal anti-cachectin antibody fragments (F(ab')2) administered to baboons only one hour before bacterial challenge protected against shock, but did not prevent critical organ failure. Complete protection against shock, vital organ dysfunction, persistent stress hormone release and death was conferred by administration of antibodies 2 h before bacterial infusion. These results indicate that cachectin is a mediator of fatal bacteraemic shock, and suggest that antibodies against cachectin offer a potential therapy of life-threatening infection.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              TNF- and Cancer Therapy-Induced Apoptosis: Potentiation by Inhibition of NF-kappa B

                Bookmark

                Author and article information

                Comments

                Comment on this article

                Similar content361

                Cited by25

                Most referenced authors220