25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury.

      1 , ,
      Nephron. Clinical practice
      S. Karger AG

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis-associated acute kidney injury (AKI) is associated with a high attributable mortality and an increased risk of developing chronic kidney failure in survivors. As a successful therapy is, as yet, unavailable, a pharmacological treatment option is clearly warranted. Recently, two small phase II clinical trials demonstrated beneficial renal effects of bovine-derived alkaline phosphatase administration in critically ill patients with sepsis-associated AKI. The rationale behind the renal protective effects remains to be fully elucidated, but is likely to be related to dephosphorylation and thereby detoxification of detrimental molecules involved in the pathogenesis of sepsis-associated AKI. A potent candidate target molecule might be endotoxin (lipopolysaccharide) from the cell wall of Gram-negative bacteria, which is associated with the development of sepsis and becomes nontoxic after being dephosphorylated by alkaline phosphatase. Another target of alkaline phosphatase could be adenosine triphosphate, a proinflammatory mediator released during cellular stress, which can be converted by alkaline phosphatase into the tissue-protective and anti-inflammatory molecule adenosine. Human recombinant alkaline phosphatase, a recently developed replacement for bovine-derived alkaline phosphatase, has shown promising results in the preclinical phase. As its safety and tolerability were recently confirmed in a phase I clinical trial, the renal protective effect of human recombinant alkaline phosphatase in sepsis-associated AKI shall be investigated in a multicenter phase II clinical trial starting at the end of this year.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation.

          Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.

            Given that the leading clinical conditions associated with acute kidney injury (AKI), namely, sepsis, major surgery, heart failure, and hypovolemia, are all associated with shock, it is tempting to attribute all AKI to ischemia on the basis of macrohemodynamic changes. However, an increasing body of evidence has suggested that in many patients, AKI can occur in the absence of overt signs of global renal hypoperfusion. Indeed, sepsis-induced AKI can occur in the setting of normal or even increased renal blood flow. Accordingly, renal injury may not be entirely explained solely on the basis of the classic paradigm of hypoperfusion, and thus other mechanisms must come into play. Herein, we put forward a "unifying theory" to explain the interplay between inflammation and oxidative stress, microvascular dysfunction, and the adaptive response of the tubular epithelial cell to the septic insult. We propose that this response is mostly adaptive in origin, that it is driven by mitochondria, and that it ultimately results in and explains the clinical phenotype of sepsis-induced AKI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alkaline Phosphatases

              Our knowledge of the structure and function of alkaline phosphatases has increased greatly in recent years. The crystal structure of the human placental isozyme has enabled us to probe salient features of the mammalian enzymes that differ from those of the bacterial enzymes. The availability of knockout mice deficient in each of the murine alkaline phosphatase isozymes has also given deep insights into their in vivo role. This has been particularly true for probing the biological role of bone alkaline phosphatase during skeletal mineralization. Due to space constraints this mini-review focuses exclusively on structural and functional features of mammalian alkaline phosphatases as identified by crystallography and probed by site-directed mutagenesis and kinetic analysis. An emphasis is also placed on the substrate specificity of alkaline phosphatases, their catalytic properties as phosphohydrolases as well as phosphodiesterases and their structural and functional relatedness to a large superfamily of enzymes that includes nucleotide pyrophosphatase/phosphodiesterase.
                Bookmark

                Author and article information

                Journal
                Nephron Clin Pract
                Nephron. Clinical practice
                S. Karger AG
                1660-2110
                1660-2110
                2014
                : 127
                : 1-4
                Affiliations
                [1 ] Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
                Article
                000363256
                10.1159/000363256
                25343839
                9dc383a7-2ebb-49c1-a2e0-215bea2af352
                History

                Comments

                Comment on this article