239
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Secondary metabolites in fungus-plant interactions.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.

          Related collections

          Most cited references230

          • Record: found
          • Abstract: not found
          • Article: not found

          Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development.

            Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fungal secondary metabolism - from biochemistry to genomics.

              Much of natural product chemistry concerns a group of compounds known as secondary metabolites. These low-molecular-weight metabolites often have potent physiological activities. Digitalis, morphine and quinine are plant secondary metabolites, whereas penicillin, cephalosporin, ergotrate and the statins are equally well known fungal secondary metabolites. Although chemically diverse, all secondary metabolites are produced by a few common biosynthetic pathways, often in conjunction with morphological development. Recent advances in molecular biology, bioinformatics and comparative genomics have revealed that the genes encoding specific fungal secondary metabolites are clustered and often located near telomeres. In this review, we address some important questions, including which evolutionary pressures led to gene clustering, why closely related species produce different profiles of secondary metabolites, and whether fungal genomics will accelerate the discovery of new pharmacologically active natural products.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Frontiers in plant science
                Frontiers Media SA
                1664-462X
                1664-462X
                2015
                : 6
                Affiliations
                [1 ] Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen Debrecen, Hungary.
                [2 ] Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of Debrecen Debrecen, Hungary ; Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of Sciences Debrecen, Hungary.
                [3 ] Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen Debrecen, Hungary.
                Article
                10.3389/fpls.2015.00573
                4527079
                26300892
                9add4ad7-a958-4206-8757-a46b09f190c4
                History

                host-pathogen interaction,mycotoxin,phytoalexin,phytotoxin,secondary metabolite

                Comments

                Comment on this article