30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Decision-making in sensorimotor control

      Nature reviews. Neuroscience
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Noise in the nervous system.

          Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coding and use of tactile signals from the fingertips in object manipulation tasks.

            During object manipulation tasks, the brain selects and implements action-phase controllers that use sensory predictions and afferent signals to tailor motor output to the physical properties of the objects involved. Analysis of signals in tactile afferent neurons and central processes in humans reveals how contact events are encoded and used to monitor and update task performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical mechanisms of action selection: the affordance competition hypothesis.

              Paul Cisek (2007)
              At every moment, the natural world presents animals with two fundamental pragmatic problems: selection between actions that are currently possible and specification of the parameters or metrics of those actions. It is commonly suggested that the brain addresses these by first constructing representations of the world on which to build knowledge and make a decision, and then by computing and executing an action plan. However, neurophysiological data argue against this serial viewpoint. In contrast, it is proposed here that the brain processes sensory information to specify, in parallel, several potential actions that are currently available. These potential actions compete against each other for further processing, while information is collected to bias this competition until a single response is selected. The hypothesis suggests that the dorsal visual system specifies actions which compete against each other within the fronto-parietal cortex, while a variety of biasing influences are provided by prefrontal regions and the basal ganglia. A computational model is described, which illustrates how this competition may take place in the cerebral cortex. Simulations of the model capture qualitative features of neurophysiological data and reproduce various behavioural phenomena.
                Bookmark

                Author and article information

                Journal
                10.1038/s41583-018-0045-9
                http://www.springer.com/tdm

                Comments

                Comment on this article