18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cave-dwelling pholcid spiders (Araneae, Pholcidae): a review

      Subterranean Biology
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pholcidae are ubiquitous spiders in tropical and subtropical caves around the globe, yet very little is known about cave-dwelling pholcids beyond what is provided in taxonomic descriptions and faunistic papers. This paper provides a review based on a literature survey and unpublished information, while pointing out potential biases and promising future projects. A total of 473 native (i.e. non-introduced) species of Pholcidae have been collected in about 1000 caves. The large majority of cave-dwelling pholcids are not troglomorphic; a list of 86 troglomorphic species is provided, including 21 eyeless species and 21 species with strongly reduced eyes. Most troglomorphic pholcids are representatives of only two genera: AnopsicusChamberlin & Ivie, 1938 and MetagoniaSimon, 1893. Mexico is by far the richest country in terms of troglomorphic pholcids, followed by several islands and mainland SE Asia. The apparent dominance of Mexico may partly be due to collectors’ and taxonomists’ biases. Most caves harbor only one pholcid species, but 91 caves harbor two and more species (up to five species). Most troglomorphic pholcids belong to two subfamilies (Modisiminae, Pholcinae), very few belong to Smeringopinae and Arteminae, none to Ninetinae. This is in agreement with the recent finding that within Pholcidae, microhabitat changes in general are concentrated in Modisiminae and Pholcinae.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Book: not found

          Karst Hydrogeology and Geomorphology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The complex origin of Astyanax cavefish

            Background The loss of phenotypic characters is a common feature of evolution. Cave organisms provide excellent models for investigating the underlying patterns and processes governing the evolutionary loss of phenotypic traits. The blind Mexican cavefish, Astyanax mexicanus, represents a particularly strong model for both developmental and genetic analyses as these fish can be raised in the laboratory and hybridized with conspecific surface form counterparts to produce large F2 pedigrees. As studies have begun to illuminate the genetic bases for trait evolution in these cavefish, it has become increasingly important to understand these phenotypic changes within the context of cavefish origins. Understanding these origins is a challenge. For instance, widespread convergence on similar features renders morphological characters less informative. In addition, current and past gene flow between surface and cave forms have complicated the delineation of particular cave populations. Results Past population-level analyses have sought to: 1) estimate at what time in the geological past cave forms became isolated from surface-dwelling ancestors, 2) define the extent to which cave form populations originated from a common invasion (single origin hypothesis) or several invasions (multiple origin hypothesis), and 3) clarify the role of geological and climatic events in Astyanax cavefish evolution. In recent years, thanks to the combined use of morphological and genetic data, a much clearer picture has emerged regarding the origins of Astyanax cavefish. Conclusions The consensus view, based on several recent studies, is that cave forms originated from at least two distinct ancestral surface-dwelling stocks over the past several million years. In addition, each stock gave rise to multiple invasions of the subterranean biotope. The older stock is believed to have invaded the El Abra caves at least three times while the new stock separately invaded the northern Guatemala and western Micos caves. This renewed picture of Astyanax cavefish origins will help investigators draw conclusions regarding the evolution of phenotypic traits through parallelism versus convergence. Additionally, it will help us understand how the presence of cave-associated traits in old versus young cave populations may be influenced by the time since isolation in the cave environment. This will, in turn, help to inform our broader understanding of the forces that govern the evolution of phenotypic loss.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Cave Life

                Bookmark

                Author and article information

                Journal
                Subterranean Biology
                SB
                Pensoft Publishers
                1314-2615
                1768-1448
                June 06 2018
                June 06 2018
                : 26
                : 1-18
                Article
                10.3897/subtbiol.26.26430
                e927ca77-286b-4e0a-91c7-b8e0da3ab1d9
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article