Blog
About

61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Azimuthal asymmetries in the debris disk around HD61005

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100\,Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40\,Myr-old solar-type star HD\,61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (\(e \sim 0.1\)) and that the dust density is two times larger at the pericenter compared to the apocenter. With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between \(\sim\)\,1000\,km-sized bodies at \(\sim\)\,61\,au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star.

          Related collections

          Author and article information

          Journal
          2016-01-28
          2016-05-09
          Article
          1601.07861

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          Accepted by A&A
          astro-ph.SR astro-ph.EP

          Planetary astrophysics, Solar & Stellar astrophysics

          Comments

          Comment on this article