15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vitro cytokine release from rat type II pneumocytes and alveolar macrophages following exposure to JP-8 jet fuel in co-culture.

      Toxicology
      Animals, Cell Line, Transformed, Coculture Techniques, Cytokines, secretion, Hydrocarbons, pharmacology, Interleukin-1, Interleukin-10, Interleukin-6, Macrophages, Alveolar, cytology, drug effects, metabolism, Male, Metabolism, Petroleum, adverse effects, Rats, Rats, Inbred F344, Time Factors, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alveolar type II epithelial cells (AIIE) and pulmonary alveolar macrophages (PAM) are involved in pulmonary toxicity of JP-8 jet fuel exposure. To further elucidate their inflammatory mechanisms, the effect(s) of JP-8 jet fuel on cytokine secretion were examined in a transformed rat AIIE cell line (RLE-6TN) culture alone, primary PAM (from Fischer 344 rats) culture alone, and the co-culture of AIIE and primary PAM. A series of JP-8 jet fuel concentrations (0-0.8 microg/ml), which may actually be encountered in alveolar space of lungs exposed in vivo, were placed in cell culture for 24 h. Cultured AIIE alone secreted spontaneously interleukin (IL)-1beta and -6 [below detectable limits for IL-10 and tumor necrosis factor-alpha (TNF-alpha)], whereas cultured PAM alone secreted IL-1beta, -10, and TNF-alpha, in a concentration-dependent manner. These data suggest that the release of cytokines, not only from PAM but also from AIIE cells, may contribute to JP-8 jet fuel-induced inflammatory response in the alveolar space. However, the co-cultures of AIIE and PAM showed no significant changes in IL-1beta, -6, and TNF-alpha at any JP-8 jet fuel concentration compared to control values. These cytokine levels in co-cultures of AIIE and PAM were inversely related to these of cultured AIIE or PAM alone. Interestingly, IL-10 levels in the co-culture system were concentration-dependently increased up to 1058% at JP-8 concentrations of 0.8 microg/ml, although under detectable limits in cultured AIIE alone and no significant concentration change in cultured PAM alone. It appears that PAM may possibly act via paracrine and/or autocrine pathways to signal AIIE cells to regulate cytokine release.

          Related collections

          Author and article information

          Comments

          Comment on this article