17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive and user-friendly framework for 3D-data visualisation in invertebrates and other organisms

      1 , 1 , 2 , 3
      Journal of Morphology
      Wiley

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D‐data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D‐data easier, thereby encouraging more researchers to utilise 3D‐imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D‐data, including basic and advanced options for producing images, videos and interactive 3D‐PDFs, from both volume and surface‐mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D‐data, and provide example figures illustrating the different options for generating 3D‐figures for publication. As more biology journals adopt 3D‐PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high‐resolution 3D‐figures, enhancing the way we communicate science.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          A field comes of age: geometric morphometrics in the 21st century

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tempo and mode of three-dimensional morphological evolution in male reproductive structures.

            Various evolutionary forces may shape the evolution of traits that influence the mating decisions of males and females. Phenotypic traits that males and females use to judge the species identify of potential mates should evolve in a punctuated fashion, changing significantly at the time of speciation but changing little between speciation events. In contrast, traits experiencing sexual selection or sexually antagonistic interactions are generally expected to change continuously over time because of the directional selection pressures imposed on one sex by the actions of the other. To test these hypotheses, we used spherical harmonic representations of the shapes of male mating structures in reconstructions of the evolutionary tempo of these structures across the history of the Enallagma damselfly clade. Our analyses show that the evolution of these structures is completely consistent with a punctuated model of evolutionary change and a constant evolutionary rate throughout the clade's history. In addition, no interpopulation variation in shape was detected across the range of one species. These results indicate that male mating structures in this genus are used primarily for identifying the species of potential mates and experience little or no selection from intraspecific sexual selection or sexual antagonism. The implications of these results for speciation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis

              Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible.
                Bookmark

                Author and article information

                Journal
                Journal of Morphology
                Journal of Morphology
                Wiley
                03622525
                February 2019
                February 2019
                January 17 2019
                : 280
                : 2
                : 223-231
                Affiliations
                [1 ]Division of Ecology and Evolution; Research School of Biology, The Australian National University; Acton Australia
                [2 ]Department of Terrestrial Zoology; Western Australian Museum; Perth Western Australia Australia
                [3 ]Centre for Evolutionary Biology; The University of Western Australia; Perth Western Australia Australia
                Article
                10.1002/jmor.20938
                2cfba8a7-0267-416f-94e2-61debfc0ecaa
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article