73
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity

      Cell systems
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative single-cell RNA-seq with unique molecular identifiers.

          Single-cell RNA sequencing (RNA-seq) is a powerful tool to reveal cellular heterogeneity, discover new cell types and characterize tumor microevolution. However, losses in cDNA synthesis and bias in cDNA amplification lead to severe quantitative errors. We show that molecular labels--random sequences that label individual molecules--can nearly eliminate amplification noise, and that microfluidic sample preparation and optimized reagents produce a fivefold improvement in mRNA capture efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.

            Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche.

              In adult skin, each hair follicle contains a reservoir of stem cells (the bulge), which can be mobilized to regenerate the new follicle with each hair cycle and to reepithelialize epidermis during wound repair. Here we report new methods that permit their clonal analyses and engraftment and demonstrate the two defining features of stem cells, namely self-renewal and multipotency. We also show that, within the bulge, there are two distinct populations, one of which maintains basal lamina contact and temporally precedes the other, which is suprabasal and arises only after the start of the first postnatal hair cycle. This spatial distinction endows them with discrete transcriptional programs, but surprisingly, both populations are growth inhibited in the niche but can self-renew in vitro and make epidermis and hair when grafted. These findings suggest that the niche microenvironment imposes intrinsic "stemness" features without restricting the establishment of epithelial polarity and changes in gene expression.
                Bookmark

                Author and article information

                Journal
                10.1016/j.cels.2016.08.010
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article