73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autism-specific maternal autoantibodies recognize critical proteins in developing brain

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorders (ASDs) are neurodevelopmental in origin, affecting an estimated 1 in 88 children in the United States. We previously described ASD-specific maternal autoantibodies that recognize fetal brain antigens. Herein, we demonstrate that lactate dehydrogenase A and B (LDH), cypin, stress-induced phosphoprotein 1 (STIP1), collapsin response mediator proteins 1 and 2 (CRMP1, CRMP2) and Y-box-binding protein to comprise the seven primary antigens of maternal autoantibody-related (MAR) autism. Exclusive reactivity to specific antigen combinations was noted in 23% of mothers of ASD children and only 1% of controls. ASD children from mothers with specific reactivity to LDH, STIP1 and CRMP1 and/or cypin (7% vs 0% in controls; P<0.0002; odds ratios of 24.2 (95% confidence interval: 1.45–405)) had elevated stereotypical behaviors compared with ASD children from mothers lacking these antibodies. We describe the first panel of clinically significant biomarkers with over 99% specificity for autism risk thereby advancing our understanding of the etiologic mechanisms and therapeutic possibilities for MAR autism.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Database resources of the National Center for Biotechnology.

          D Wheeler (2003)
          In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroglial activation and neuroinflammation in the brain of patients with autism.

            Autism is a neurodevelopmental disorder characterized by impaired communication and social interaction and may be accompanied by mental retardation and epilepsy. Its cause remains unknown, despite evidence that genetic, environmental, and immunological factors may play a role in its pathogenesis. To investigate whether immune-mediated mechanisms are involved in the pathogenesis of autism, we used immunocytochemistry, cytokine protein arrays, and enzyme-linked immunosorbent assays to study brain tissues and cerebrospinal fluid (CSF) from autistic patients and determined the magnitude of neuroglial and inflammatory reactions and their cytokine expression profiles. Brain tissues from cerebellum, midfrontal, and cingulate gyrus obtained at autopsy from 11 patients with autism were used for morphological studies. Fresh-frozen tissues available from seven patients and CSF from six living autistic patients were used for cytokine protein profiling. We demonstrate an active neuroinflammatory process in the cerebral cortex, white matter, and notably in cerebellum of autistic patients. Immunocytochemical studies showed marked activation of microglia and astroglia, and cytokine profiling indicated that macrophage chemoattractant protein (MCP)-1 and tumor growth factor-beta1, derived from neuroglia, were the most prevalent cytokines in brain tissues. CSF showed a unique proinflammatory profile of cytokines, including a marked increase in MCP-1. Our findings indicate that innate neuroimmune reactions play a pathogenic role in an undefined proportion of autistic patients, suggesting that future therapies might involve modifying neuroglial responses in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Placental transport of immunoglobulin G

              Maternal antibodies transported across the placenta protect the newborn. Maternal immunoglobulin G (IgG) concentrations in fetal blood increase from early in the second trimester through term, most antibodies being acquired during the third trimester. IgG1 is the most efficiently transported subclass and IgG2 the least. Transfer across the syncytiotrophoblast of the chorionic villi is mediated by the neonatal Fc receptor, FcRn. Immune complexes are absorbed in the stroma of the villi, probably by FcgammaRI, FcgammaRII, and FcgammaRIII on placental macrophages. The mechanism of IgG transport across the endothelium of fetal capillaries is not understood. Endothelial cells in terminal villi express FcgammaRIIb. However, it is not known whether this receptor transports IgG or prevents transport of immune complexes to the fetus.
                Bookmark

                Author and article information

                Journal
                Translational Psychiatry
                Transl Psychiatry
                Springer Science and Business Media LLC
                2158-3188
                July 2013
                July 9 2013
                July 2013
                : 3
                : 7
                : e277
                Article
                10.1038/tp.2013.50
                30d25042-a5d6-43fa-b8fa-9ed07aefcdd1
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article