60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin and Health.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: not found
          • Article: not found

          Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and cancer: how hot is the link?

            Although inflammation has long been known as a localized protective reaction of tissue to irritation, injury, or infection, characterized by pain, redness, swelling, and sometimes loss of function, there has been a new realization about its role in a wide variety of diseases, including cancer. While acute inflammation is a part of the defense response, chronic inflammation can lead to cancer, diabetes, cardiovascular, pulmonary, and neurological diseases. Several pro-inflammatory gene products have been identified that mediate a critical role in suppression of apoptosis, proliferation, angiogenesis, invasion, and metastasis. Among these gene products are TNF and members of its superfamily, IL-1alpha, IL-1beta, IL-6, IL-8, IL-18, chemokines, MMP-9, VEGF, COX-2, and 5-LOX. The expression of all these genes are mainly regulated by the transcription factor NF-kappaB, which is constitutively active in most tumors and is induced by carcinogens (such as cigarette smoke), tumor promoters, carcinogenic viral proteins (HIV-tat, HIV-nef, HIV-vpr, KHSV, EBV-LMP1, HTLV1-tax, HPV, HCV, and HBV), chemotherapeutic agents, and gamma-irradiation. These observations imply that anti-inflammatory agents that suppress NF-kappaB or NF-kappaB-regulated products should have a potential in both the prevention and treatment of cancer. The current review describes in detail the critical link between inflammation and cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research.

              Curcuma longa (turmeric) has a long history of use in Ayurvedic medicine as a treatment for inflammatory conditions. Turmeric constituents include the three curcuminoids: curcumin (diferuloylmethane; the primary constituent and the one responsible for its vibrant yellow color), demethoxycurcumin, and bisdemethoxycurcumin, as well as volatile oils (tumerone, atlantone, and zingiberone), sugars, proteins, and resins. While numerous pharmacological activities, including antioxidant and antimicrobial properties, have been attributed to curcumin, this article focuses on curcumin's anti-inflammatory properties and its use for inflammatory conditions. Curcumin's effect on cancer (from an anti-inflammatory perspective) will also be discussed; however, an exhaustive review of its many anticancer mechanisms is outside the scope of this article. Research has shown curcumin to be a highly pleiotropic molecule capable of interacting with numerous molecular targets involved in inflammation. Based on early cell culture and animal research, clinical trials indicate curcumin may have potential as a therapeutic agent in diseases such as inflammatory bowel disease, pancreatitis, arthritis, and chronic anterior uveitis, as well as certain types of cancer. Because of curcumin's rapid plasma clearance and conjugation, its therapeutic usefulness has been somewhat limited, leading researchers to investigate the benefits of complexing curcumin with other substances to increase systemic bioavailability. Numerous in-progress clinical trials should provide an even deeper understanding of the mechanisms and therapeutic potential of curcumin.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules (Basel, Switzerland)
                MDPI AG
                1420-3049
                1420-3049
                Feb 25 2016
                : 21
                : 3
                Affiliations
                [1 ] Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain. mpulido@ugr.es.
                [2 ] Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain. mpulido@ugr.es.
                [3 ] Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain. jorgemf@correo.ugr.es.
                [4 ] Departamento de Fisiología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain. jorgemf@correo.ugr.es.
                [5 ] Servicio de Anatomía Patológica, Complejo Hospitalario de Jaen, 23007 Jaén, Spain. cesarl.ramirez.sspa@juntadeandalucia.es.
                [6 ] Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain. mramirez@ugr.es.
                [7 ] Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain. mramirez@ugr.es.
                Article
                molecules21030264
                10.3390/molecules21030264
                26927041
                7dfc17d2-81d5-408b-810c-8dbfa9c5c20d
                History

                ROS,anti-inflammatory,antioxidant,bioavailability,cancer,cardiovascular diseases,curcumin,liver disorders,lung diseases,natural compound

                Comments

                Comment on this article