83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alternative pre-mRNA splicing has the potential to greatly diversify the repertoire of transcripts in multicellular organisms. Increasing evidence suggests that this expansive layer of gene regulation plays a particularly important role in the development and function of the nervous system, one of the most complex organ systems found in nature. In this review, we highlight recent studies that continue to emphasize the influence and contribution of alternative splicing regulation to various aspects of neuronal development in addition to its role in the mature nervous system.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          HITS-CLIP yields genome-wide insights into brain alternative RNA processing

          Summary Protein-RNA interactions play critical roles in all aspects of gene expression. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova2 revealed extremely reproducible RNA binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3′ UTRs, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

            Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.

              Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code" for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
                Bookmark

                Author and article information

                Journal
                Front Neurosci
                Frontiers in neuroscience
                Frontiers Media SA
                1662-453X
                1662-453X
                2012
                : 6
                Affiliations
                [1 ] FAS Center for Systems Biology, Harvard University Cambridge, MA, USA.
                Article
                10.3389/fnins.2012.00122
                3424503
                22936897
                8110fb43-ab74-457a-a47c-b90de57e412f
                History

                RNA processing,alternative splicing,gene regulation,genomics,nervous system

                Comments

                Comment on this article