41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Separate visual pathways for perception and action.

          Accumulating neuropsychological, electrophysiological and behavioural evidence suggests that the neural substrates of visual perception may be quite distinct from those underlying the visual control of actions. In other words, the set of object descriptions that permit identification and recognition may be computed independently of the set of descriptions that allow an observer to shape the hand appropriately to pick up an object. We propose that the ventral stream of projections from the striate cortex to the inferotemporal cortex plays the major role in the perceptual identification of objects, while the dorsal stream projecting from the striate cortex to the posterior parietal region mediates the required sensorimotor transformations for visually guided actions directed at such objects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Working memory in primate sensory systems.

            Sensory working memory consists of the short-term storage of sensory stimuli to guide behaviour. There is increasing evidence that elemental sensory dimensions - such as object motion in the visual system or the frequency of a sound in the auditory system - are stored by segregated feature-selective systems that include not only the prefrontal and parietal cortex, but also areas of sensory cortex that carry out relatively early stages of processing. These circuits seem to have a dual function: precise sensory encoding and short-term storage of this information. New results provide insights into how activity in these circuits represents the remembered sensory stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A common reference frame for movement plans in the posterior parietal cortex.

              Orchestrating a movement towards a sensory target requires many computational processes, including a transformation between reference frames. This transformation is important because the reference frames in which sensory stimuli are encoded often differ from those of motor effectors. The posterior parietal cortex has an important role in these transformations. Recent work indicates that a significant proportion of parietal neurons in two cortical areas transforms the sensory signals that are used to guide movements into a common reference frame. This common reference frame is an eye-centred representation that is modulated by eye-, head-, body- or limb-position signals. A common reference frame might facilitate communication between different areas that are involved in coordinating the movements of different effectors. It might also be an efficient way to represent the locations of different sensory targets in the world.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Frontiers in human neuroscience
                Frontiers Media SA
                1662-5161
                1662-5161
                2015
                : 9
                Affiliations
                [1 ] Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland.
                Article
                10.3389/fnhum.2015.00691
                4700263
                26779002
                6f3dcca9-9594-483e-a1e9-84913d40ad86
                History

                action planning,complex objects,dorsal stream,encoding bias,grasp execution,haptic exploration

                Comments

                Comment on this article