29
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Sequence Alignment/Map format and SAMtools

          Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast gapped-read alignment with Bowtie 2.

            As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

              We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
                Bookmark

                Author and article information

                Journal
                ISME J
                ISME J
                The ISME Journal
                Nature Publishing Group
                1751-7362
                1751-7370
                November 2017
                11 July 2017
                1 November 2017
                : 11
                : 11
                : 2465-2478
                Affiliations
                [1 ]RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel, Germany
                [2 ]Department of Botany II, Julius-von-Sachs Institute for Biological Science, University of Würzburg , Würzburg, Germany
                [3 ]Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, MA, USA
                [4 ]Christian-Albrechts University of Kiel , Kiel, Germany
                Author notes
                [* ]RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel , Düsternbrooker Weg 20, Kiel, Germany. E-mail: uhentschel@ 123456geomar.de
                Author information
                http://orcid.org/0000-0002-9480-1460
                Article
                ismej2017101
                10.1038/ismej.2017.101
                5649159
                28696422
                a2a53559-b22b-47bf-9353-e897e230be0b
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 December 2016
                : 07 May 2017
                : 21 May 2017
                Categories
                Original Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article