31
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Effect of inhibition of farnesylation and geranylgeranylation on renal fibrogenesis in vitro.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Ras and Rho family of GTPases serve as essential molecular switches in the downstream signalling of many cytokines involved in the regulation of renal fibroblast activity. Prenylation is a post-translational process critical to the membrane localization and function of these GTPases. We studied the effects of a farnesyltransferase inhibitor BMS-191563 and geranylgeranyltransferase inhibitor GGTI-298 on renal fibrogenesis in vitro.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

          The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteins regulating Ras and its relatives.

            GTPases of the Ras superfamily regulate many aspects of cell growth, differentiation and action. Their functions depend on their ability to alternate between inactive and active forms, and on their cellular localization. Numerous proteins affecting the GTPase activity, nucleotide exchange rates and membrane localization of Ras superfamily members have now been identified. Many of these proteins are much larger and more complex than their targets, containing multiple domains capable of interacting with an intricate network of cellular enzymes and structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              All ras proteins are polyisoprenylated but only some are palmitoylated.

              The C-terminal CAAX motif of the yeast mating factors is modified by proteolysis to remove the three terminal amino acids (-AAX) leaving a C-terminal cysteine residue that is polyisoprenylated and carboxyl-methylated. Here we show that all ras proteins are polyisoprenylated on their C-terminal cysteine (Cys186). Mutational analysis shows palmitoylation does not take place on Cys186 as previously thought but on cysteine residues contained in the hypervariable domain of some ras proteins. The major expressed form of c-K-ras (exon 4B) does not have a cysteine residue immediately upstream of Cys186 and is not palmitoylated. Polyisoprenylated but nonpalmitoylated H-ras proteins are biologically active and associate weakly with cell membranes. Palmitoylation increases the avidity of this binding and enhances their transforming activity. Polyisoprenylation is essential for biological activity as inhibiting the biosynthesis of polyisoprenoids abolishes membrane association of p21ras.
                Bookmark

                Author and article information

                Journal
                Nephron Exp. Nephrol.
                Nephron. Experimental nephrology
                S. Karger AG
                1660-2129
                1660-2129
                2006
                : 102
                : 1
                Affiliations
                [1 ] Department of Nephrology, Royal Melbourne Hospital, Melbourne, Australia. rosemary.masterson@mh.org.au
                Article
                88403
                10.1159/000088403
                16179803
                2088f502-f342-4613-aad3-c374181343af
                History

                Comments

                Comment on this article