134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topological insulators are a novel class of quantum matter with a gapped insulating bulk yet gapless spin helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully-tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conducatance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction respectively. Such a system paves the way to explore rich physics ranging from topological magnetoelectric effects to exciton condensation.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Two-Dimensional Gas of Massless Dirac Fermions in Graphene

          Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Boron nitride substrates for high-quality graphene electronics

            Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics far inferior to the expected intrinsic properties of graphene[1-12]. While suspending graphene above the substrate yields substantial improvement in device quality[13,14], this geometry imposes severe limitations on device architecture and functionality. Realization of suspended-like sample quality in a substrate supported geometry is essential to the future progress of graphene technology. In this Letter, we report the fabrication and characterization of high quality exfoliated mono- and bilayer graphene (MLG and BLG) devices on single crystal hexagonal boron nitride (h-BN) substrates, by a mechanical transfer process. Variable-temperature magnetotransport measurements demonstrate that graphene devices on h-BN exhibit enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping in comparison with SiO2-supported devices. The ability to assemble crystalline layered materials in a controlled way sets the stage for new advancements in graphene electronics and enables realization of more complex graphene heterostructres.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Superconducting proximity effect and Majorana fermions at the surface of a topological insulator

              We study the proximity effect between an s-wave superconductor and the surface states of a strong topological insulator. The resulting two dimensional state resembles a spinless p_x+ip_y superconductor, but does not break time reversal symmetry. This state supports Majorana bound states at vortices. We show that linear junctions between superconductors mediated by the topological insulator form a non chiral 1 dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating and fusing Majorana bound states.
                Bookmark

                Author and article information

                Journal
                10.1038/ncomms11434
                1511.04597
                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Nanophysics
                Nanophysics

                Comments

                Comment on this article