41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Globally, rates of ESBL-producing Enterobacteriaceae are rising. We undertook a literature review, and present the temporal trends in blaCTX-M epidemiology, showing that blaCTX-M-15 and blaCTX-M-14 have displaced other genotypes in many parts of the world. Explanations for these changes can be attributed to: (i) horizontal gene transfer (HGT) of plasmids; (ii) successful Escherichia coli clones; (iii) ESBLs in food animals; (iv) the natural environment; and (v) human migration and access to basic sanitation. We also provide explanations for the changing epidemiology of blaCTX-M-2 and blaCTX-M-27. Modifiable anthropogenic factors, such as poor access to basic sanitary facilities, encourage the spread of blaCTX-M and other antimicrobial resistance (AMR) genes, such as blaNDM, blaKPC and mcr-1. We provide further justification for novel preventative and interventional strategies to reduce transmission of these AMR genes.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance-the need for global solutions.

          The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistance plasmid families in Enterobacteriaceae.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmids and the spread of resistance.

              Plasmids represent one of the most difficult challenge for counteracting the dissemination of antimicrobial resistance. They contribute to the spread of relevant resistance determinants, promoting horizontal gene transfer among unrelated bacteria. Undistinguishable plasmids were identified in unrelated bacterial strains isolated at huge geographically distant area, with no apparent epidemiological links. These plasmids belong to families that are largely prevalent in naturally occurring bacteria, usually carry multiple physically linked genetic determinants, conferring resistance to different classes of antibiotics simultaneously. Plasmids also harbour virulence factors and addiction systems, promoting their stability and maintenance in the bacterial host, in different environmental conditions. The characteristics of the most successful plasmids that were at the origin of the spread of carbapenemase, expanded-spectrum β-lactamase, and plasmid-mediated quinolone resistance genes are discussed in this review. Copyright © 2013 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J. Antimicrob. Chemother.
                The Journal of antimicrobial chemotherapy
                Oxford University Press (OUP)
                1460-2091
                0305-7453
                May 25 2017
                Affiliations
                [1 ] Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
                [2 ] Public Health England, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham B5 9SS, UK.
                [3 ] Magus Strategic Communications Ltd, Marr House, Scagglethorpe, Malton YO17?8ED, UK.
                Article
                3852658
                10.1093/jac/dkx146
                28541467
                5cad9a25-cc77-413a-9d48-3ea50c03550e
                History

                Comments

                Comment on this article