43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities

      Scientific Reports
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells.

          Toll-like receptors (TLRs) sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). As pathogens may contain several TLR agonists, we sought to determine whether different TLRs cooperate in DC activation. In human and mouse DCs, TLR3 and TLR4 potently acted in synergy with TLR7, TLR8 and TLR9 in the induction of a selected set of genes. Synergic TLR stimulation increased production of interleukins 12 and 23 and increased the Delta-4/Jagged-1 ratio, leading to DCs with enhanced and sustained T helper type 1-polarizing capacity. Global gene transcriptional analysis showed that TLR synergy 'boosted' only approximately 1% of the transcripts induced by single TLR agonists. These results identify a 'combinatorial code' by which DCs discriminate pathogens and suggest new strategies for promoting T helper type 1 responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin.

            Monocytes/macrophages (MΦ), considered as plastic cells, can differentiate into either a pro-inflammatory (M1) subtype, also known as a classically activated subtype, or an anti-inflammatory alternatively activated subtype (M2) according to their microenvironment. Phenotypic markers of mouse polarized MΦ have been extensively studied, whereas their human counterparts remain less characterized. The main goal of this study was therefore to carefully characterize phenotypic and genomic markers of primary human MΦ generated from M-CSF-treated blood monocytes and polarized towards M1 or M2 subtype upon the action of lipopolysaccharide and interferon-γ (for M1) or interleukin (IL)-4 (for M2). Membrane expression of the markers CD80 and CD200R was found to be specific of human M1 and M2 polarized MΦ, respectively, whereas, by contrast, mannose receptor (CD206) expression did not discriminate between M1 and M2. mRNA expression analysis further identified six markers of M1 polarization (IL-12p35, CXCL10, CXCL11, CCL5, CCR7 and IDO1), five markers of M2 polarization (TGF-β, CCL14, CCL22, SR-B1 and PPARγ) and transcription factors involved in MΦ polarization. Ability of human M-CSF-generated MΦ to polarize toward M1 or M2 subtype was also associated with enhanced secretion of TNFα, IL-1β, IL-12p40, CXCL10 and IL-10 (for M1) or CCL22 (for M2). Moreover, the comparison of the expression of M1 markers in M-CSF- and GM-CSF-MΦ polarized towards M1 subtype has revealed similarities. In conclusion, we demonstrated that human M-CSF MΦ can polarize toward a M1 type after IFNγ/LPS stimulation. Moreover, the M1 and M2 markers of human polarized MΦ identified in the present study may be useful to better identify human MΦ subtypes, particularly at the tissue level, in order to better understand their respective roles in the development of pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host innate immune receptors and beyond: making sense of microbial infections.

              The complexity of the immune system mirrors its manifold mechanisms of host-microbe interactions. A relatively simplified view was posited after the identification of host innate immune receptors that their distinct mechanisms of sensing "microbial signatures" create unique molecular switches to trigger the immune system. Recently, more sophisticated and cooperative strategies for these receptors have been revealed during receptor-ligand interactions, trafficking, and intra- and intercellular signaling, in order to deal with a diverse range of microbes. Continued mapping of the complex networks of host-microbe interactions may improve our understanding of self/non-self discrimination in immunity and its intervention.
                Bookmark

                Author and article information

                Journal
                10.1038/s41598-018-29850-4
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article