28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crosstalk of mRNA, miRNA, lncRNA and circRNA, and Their Regulatory Pattern in Pulmonary Fibrosis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Noncoding RNAs (ncRNAs), such as microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA), are regulators of important biological functions. Therefore, understanding their crosstalk and regulatory patterns can provide treatment for diseases. In this study, differentially expressed RNA transcripts were obtained by RNA sequencing in bleomycin-induced pulmonary fibrosis in mice. Four miRNAs, 10 lncRNAs, and two circRNAs were tested to validate the sequencing. There were differentially expressed 585 mRNAs, 236 miRNAs, 272 lncRNAs, and 74 circRNAs in pulmonary fibrosis. Their location on chromosome, length varieties, interaction, and host genes were analyzed. lnc949, circ949, and circ057 were chosen to explore the detailed crosstalk and regulatory pattern, which were measured by using RNA-FISH, dual-luciferase reporter assay, real-time cell analysis and rescue experiment, co-localization analysis, RNA immunoprecipitation, and RNA pull down. The data showed that the three ncRNAs were predominant in the cytoplasm, and their regulatory patterns were focused on post-transcription. The fibrotic function of lnc949 depended on its host gene FKBP5. circ949 and circ057 formed a regulatory network with lnc865 and lnc556 to simultaneously regulate miR-29b-2-5p targeting STAT3 phosphorylation. Collectively, different RNAs can crosstalk with each other to regulate pulmonary fibrosis through different regulatory patterns. We hope these data can provide a full concept of RNA transcripts, leading to a new treatment for pulmonary fibrosis.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.

            Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r

              The H19 large intergenic noncoding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extraembryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded within H19’s first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extraembryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth promoting Insulin-like growth factor 1 receptor (Igf1r). Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress response RNA binding protein HuR. These results suggest that H19’s main physiological role is in limiting growth of the placenta prior to birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.
                Bookmark

                Author and article information

                Journal
                Molecular Therapy - Nucleic Acids
                Molecular Therapy - Nucleic Acids
                Elsevier BV
                21622531
                August 2019
                August 2019
                Article
                10.1016/j.omtn.2019.08.018
                561c4e65-50f7-4ac5-9a81-a289f1728978
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article