16
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunological characterization of immune cells that reside in specific anatomic compartments often requires their isolation from the respective tissue on the basis of enzymatic tissue disintegration. Applying enzymatic digestion of primary splenocytes, we evaluated the impact of collagenase and dispase, two enzymes that are commonly used for the liberation of immune cells from tissues, on the detectability of 48 immunologically relevant surface molecules that are frequently used for flow cytometric identification, isolation, and characterization of immune cell subsets. Whereas collagenase treatment had only minor effects on surface expression of most molecules tested, dispase treatment considerably affected antibody-mediated detectability of the majority of surface markers in subsequent FACS analyses. This effect was long lasting and, in case of high-dose dispase treatment, evident for the majority of surface molecules even after 24 h of in vitro culture. Of note, high-dose dispase treatment not only affected surface expression of certain molecules but also impaired antigen-specific proliferation of CD4(+) and CD8(+) T cells. Together, our data indicate that enzymatic tissue disintegration can have profound effects on the expression of a variety of cell-surface molecules with direct consequences for phenotypic analysis, FACS- and MACS-based target cell isolation, and immune cell function in cell culture experiments.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self.

          Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system.

            In addition to the major population of infiltrating leukocytes recovered from inflamed rat central nervous system (CNS), all of which expressed high levels of leukocyte common antigen CD45, many cells were coisolated that were MRC OX42+ (complement receptor 3/CD11b) but expressed low-to-moderate levels of CD45 and major histocompatibility complex (MHC) class I molecules. Most cells from normal CNS, in contrast, lay within this latter, CD45low population. From previous in situ immunohistochemical studies, the fortuitously isolated CD45low cells were probably resident (ramified) microglia. Using irradiation chimeras, we show that resident microglia respond to inflammation by upregulating CD45, CD4, and MHC class I molecules with a minority of these cells increasing their expression of MHC class II molecules. A 3- to 4-fold increase in the number of microglia isolated from inflamed CNS provided indirect evidence that the cells had proliferated. In normal CNS, a very small population of blood-derived CD45high-expressing cells are present; most MHC class II expression is associated with these few cells and not with the resident microglia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD27 Promotes Survival of Activated T Cells and Complements CD28 in Generation and Establishment of the Effector T Cell Pool

              CD27, like CD28, acts in concert with the T cell receptor to support T cell expansion. Using CD27−/− mice, we have shown earlier that CD27 determines the magnitude of primary and memory T cell responses to influenza virus. Here, we have examined the relative contributions of CD27 and CD28 to generation of the virus-specific effector T cell pool and its establishment at the site of infection (the lung), using CD27−/−, CD28−/−, and CD27/CD28−/− mice. We find that primary and memory CD8+ T cell responses to influenza virus are dependent on the collective contribution of both receptors. In the primary response, CD27 and CD28 impact to a similar extent on expansion of virus-specific T cells in draining lymph nodes. CD27 is the principle determinant for accumulation of virus-specific T cells in the lung because it can sustain this response in CD28−/− mice. Unlike CD28, CD27 does not affect cell cycle activity, but promotes survival of activated T cells throughout successive rounds of division at the site of priming and may do so at the site of infection as well. CD27 was found to rescue CD28−/− T cells from death at the onset of division, explaining its capacity to support a T cell response in absence of CD28.
                Bookmark

                Author and article information

                Journal
                Eur J Microbiol Immunol (Bp)
                European journal of microbiology & immunology
                Akademiai Kiado Zrt.
                2062-509X
                2062-509X
                Jun 2012
                : 2
                : 2
                Article
                EuJMI_2(2012)2/3
                10.1556/EuJMI.2.2012.2.3
                3956959
                24672679
                775f9cd4-80be-405f-8dbd-21b56e042231
                History

                collagenase,surface molecules,flow cytometry,enzymatic digestion,dispase,T cell proliferation

                Comments

                Comment on this article