41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastric carcinoma (GC) is a common and lethal malignancy, and epithelial-mesenchymal transition (EMT) is believed to contribute to invasive and metastatic tumor growth. Aquaporin 3 (AQP3) is overexpressed in human GC tissues, while human epidermal growth factor (EGF) and hepatocyte growth factor, which can induce EMT, are able to up-regulate AQP3 expression, subsequently promoting GC cell migration and proliferation. The purpose of this study was to investigate the effects of AQP3 on EMT in human GC.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EMT as the ultimate survival mechanism of cancer cells.

            Epithelial cancers make up the vast majority of cancer types and, during the transition from benign adenoma to malignant carcinoma and metastasis, epithelial tumor cells acquire a de-differentiated, migratory and invasive behavior. This process of epithelial-mesenchymal transition (EMT) goes along with dramatic changes in cellular morphology, the loss and remodeling of cell-cell and cell-matrix adhesions, and the gain of migratory and invasive capabilities. EMT itself is a multistage process, involving a high degree of cellular plasticity and a large number of distinct genetic and epigenetic alterations, as fully differentiated epithelial cells convert into poorly differentiated, migratory and invasive mesenchymal cells. In the past years, a plethora of genes have been identified that are critical for EMT and metastasis formation. Notably, the EMT process not only induces increased cancer cell motility and invasiveness but also allows cancer cells to avoid apoptosis, anoikis, oncogene addiction, cellular, senescence and general immune defense. Notably, EMT seems to play a critical role in the generation and maintenance of cancer stem cells, highly consistent with the notion that metastatic cells carry the ability to initiate new tumors. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aquaporins--new players in cancer biology.

              The aquaporins (AQPs) are small, integral-membrane proteins that selectively transport water across cell plasma membranes. A subset of AQPs, the aquaglyceroporins, also transport glycerol. AQPs are strongly expressed in tumor cells of different origins, particularly aggressive tumors. Recent discoveries of AQP involvement in cell migration and proliferation suggest that AQPs play key roles in tumor biology. AQP1 is ubiquitously expressed in tumor vascular endothelium, and AQP1-null mice show defective tumor angiogenesis resulting from impaired endothelial cell migration. AQP-expressing cancer cells show enhanced migration in vitro and greater local tumor invasion, tumor cell extravasation, and metastases in vivo. AQP-dependent cell migration may involve AQP-facilitated water influx into lamellipodia at the front edge of migrating cells. The aquaglyceroporin AQP3, which is found in normal epidermis and becomes upregulated in basal cell carcinoma, facilitates cell proliferation in different cell types. Remarkably, AQP3-null mice are resistant to skin tumorigenesis by a mechanism that may involve reduced tumor cell glycerol metabolism and ATP generation. Together, the data suggest that AQP expression in tumor cells and tumor vessels facilitates tumor growth and spread, suggesting AQP inhibition as a novel antitumor therapy.
                Bookmark

                Author and article information

                Journal
                J. Exp. Clin. Cancer Res.
                Journal of experimental & clinical cancer research : CR
                Springer Science and Business Media LLC
                1756-9966
                0392-9078
                May 03 2014
                : 33
                Affiliations
                [1 ] Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 210029 Nanjing, Jiangsu, China. shenlz@163.com.
                Article
                1756-9966-33-38
                10.1186/1756-9966-33-38
                4036310
                24887009
                27b76750-b4a1-407c-bb4d-ed39e0306598
                History

                Comments

                Comment on this article