27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The female flower of hop (Humulus lupulus var. lupulus) is an essential ingredient that gives characteristic aroma, bitterness and durability/stability to beer. However, the molecular genetic basis for identifying DNA markers in hop for breeding and to study its domestication has been poorly established. Here, we provide draft genomes for two hop cultivars [cv. Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wild hop [H. lupulus var. cordifolius; also known as Karahanasou (KR)]. Sequencing and de novo assembly of genomic DNA from heterozygous SW plants generated scaffolds with a total size of 2.05 Gb, corresponding to approximately 80% of the estimated genome size of hop (2.57 Gb). The scaffolds contained 41,228 putative protein-encoding genes. The genome sequences for SZ and KR were constructed by aligning their short sequence reads to the SW reference genome and then replacing the nucleotides at single nucleotide polymorphism (SNP) sites. De novo RNA sequencing (RNA-Seq) analysis of SW revealed the developmental regulation of genes involved in specialized metabolic processes that impact taste and flavor in beer. Application of a novel bioinformatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs and RNAs, enabled the identification of genes related to the biosynthesis of aromas and flavors that are enriched in SW compared to KR. Our results not only suggest the significance of historical human selection process for enhancing aroma and bitterness biosyntheses in hop cultivars, but also serve as crucial information for breeding varieties with high quality and yield.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

          The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

            The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The draft genome and transcriptome of Cannabis sativa

              Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.
                Bookmark

                Author and article information

                Journal
                Plant Cell Physiol.
                Plant & cell physiology
                1471-9053
                0032-0781
                Mar 2015
                : 56
                : 3
                Affiliations
                [1 ] Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan.
                [2 ] Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan.
                [3 ] Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan.
                [4 ] Hop Research Institute Co., Ltd., 438-01 Zatec, Kadanska 2525, Czech Republic.
                [5 ] Technology Development Department, Suntory System Technology (SST) Ltd., 2-1-5, Dojima, Kita-ku, Osaka, 530-8204 Japan.
                [6 ] Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan eiichiro_ono@suntory.co.jp.
                Article
                pcu169
                10.1093/pcp/pcu169
                25416290
                0ee59150-d617-4fef-8d2f-2a279e5d9031
                © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
                History

                Genomics,Hop,Humulus,Specialized metabolism,Transcriptome
                Genomics, Hop, Humulus, Specialized metabolism, Transcriptome

                Comments

                Comment on this article