28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis.

      Drug Design, Development and Therapy
      Dove Medical Press Ltd.
      purification, tellurium, allophycocyanin, antioxidant activity, phycocyanin

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tellurium-containing phycocyanin (Te-PC) and allophycocyanin (Te-APC), two organic tellurium (Te) species, were purified from tellurium-enriched Spirulina platensis by a fast protein liquid chromatographic method. It was found that the incorporation of Te into the peptides enhanced the antioxidant activities of both phycobiliproteins. With fractionation by ammonium sulfate precipitation and hydroxylapatite chromatography, Te-PC and Te-APC could be effectively separated with high purity, and Te concentrations were 611.1 and 625.3 μg g(-1) protein in Te-PC and Te-APC, respectively. The subunits in the proteins were identified by using MALDI-TOF-TOF mass spectrometry. Te incorporation enhanced the antioxidant activities of both phycobiliproteins, as examined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid assay. Moreover, Te-PC and Te-APC showed dose-dependent protection on erythrocytes against the water-soluble free radical initiator 2,2'-azo(2-asmidinopropane)dihydrochloride-induced hemolysis. In the hepatoprotective model, apoptotic cell death and nuclear condensation induced by tert-butyl hydroperoxide in HepG2 cells was significantly attenuated by Te-PC and Te-APC. Taken together, these results suggest that Te-PC and Te-APC are promising Te-containing proteins with application potential for treatment of diseases related to oxidative stress.

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina.

          Spirulina is free-floating filamentous microalgae growing in alkaline water bodies. With its high nutritional value, Spirulina has been consumed as food for centuries in Central Africa. It is now widely used as nutraceutical food supplement worldwide. Recently, great attention and extensive studies have been devoted to evaluate its therapeutic benefits on an array of diseased conditions including hypercholesterolemia, hyperglycerolemia, cardiovascular diseases, inflammatory diseases, cancer, and viral infections. The cardiovascular benefits of Spirulina are primarily resulted from its hypolipidemic, antioxidant, and antiinflammatory activities. Data from preclinical studies with various animal models consistently demonstrate the hypolipidemic activity of Spirulina. Although differences in study design, sample size, and patient conditions resulting in minor inconsistency in response to Spirulina supplementation, the findings from human clinical trials are largely consistent with the hypolipidemic effects of Spirulina observed in the preclinical studies. However, most of the human clinical trials are suffered with limited sample size and some with poor experimental design. The antioxidant and/or antiinflammatory activities of Spirulina were demonstrated in a large number of preclinical studies. However, a limited number of clinical trials have been carried out so far to confirm such activities in human. Currently, our understanding on the underlying mechanisms for Spirulina's activities, especially the hypolipidemic effect, is limited. Spirulina is generally considered safe for human consumption supported by its long history of use as food source and its favorable safety profile in animal studies. However, rare cases of side-effects in human have been reported. Quality control in the growth and process of Spirulina to avoid contamination is mandatory to guarantee the safety of Spirulina products.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tellurite: history, oxidative stress, and molecular mechanisms of resistance.

            The perceived importance of tellurium (Te) in biological systems has lagged behind selenium (Se), its lighter sister in the Group 16 chalcogens, because of tellurium's lower crustal abundance, lower oxyanion solubility and biospheric mobility and the fact that, unlike Se, Te has yet to be found to be an essential trace element. Te applications in electronics, optics, batteries and mining industries have expanded during the last few years, leading to an increase in environmental Te contamination, thus renewing biological interest in Te toxicity. This chalcogen is rarely found in the nontoxic, elemental state (Te(0)), but its soluble oxyanions, tellurite (TeO(3)(2-)) and tellurate (TeO(4)(2-)), are toxic for most forms of life even at very low concentrations. Although a number of Te resistance determinants (Tel) have been identified in plasmids or in the bacterial chromosome of different species of bacteria, the genetic and/or biochemical basis underlying bacterial TeO(3)(2-) toxicity is still poorly understood. This review traces the history of Te in its biological interactions, its enigmatic toxicity, importance in cellular oxidative stress, and interaction in cysteine metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spirulina in health care management.

              Spirulina is a photosynthetic, filamentous, spiral-shaped and multicellular edible microbe. It is the nature's richest and most complete source of nutrition. Spirulina has a unique blend of nutrients that no single source can offer. The alga contains a wide spectrum of prophylactic and therapeutic nutrients that include B-complex vitamins, minerals, proteins, gamma-linolenic acid and the super anti-oxidants such as beta-carotene, vitamin E, trace elements and a number of unexplored bioactive compounds. Because of its apparent ability to stimulate whole human physiology, Spirulina exhibits therapeutic functions such as antioxidant, anti-bacterial, antiviral, anticancer, anti-inflammatory, anti-allergic and anti-diabetic and plethora of beneficial functions. Spirulina consumption appears to promote the growth of intestinal micro flora as well. The review discusses the potential of Spirulina in health care management.
                Bookmark

                Author and article information

                Journal
                25336922
                4199980
                10.2147/DDDT.S62530

                purification,tellurium,allophycocyanin,antioxidant activity,phycocyanin

                Comments

                Comment on this article