170
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Distinguishing homologous from analogous proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Arabidopsis Information Resource (TAIR): gene structure and function annotation

              The Arabidopsis Information Resource (TAIR, http://arabidopsis.org) is the model organism database for the fully sequenced and intensively studied model plant Arabidopsis thaliana. Data in TAIR is derived in large part from manual curation of the Arabidopsis research literature and direct submissions from the research community. New developments at TAIR include the addition of the GBrowse genome viewer to the TAIR site, a redesigned home page, navigation structure and portal pages to make the site more intuitive and easier to use, the launch of several TAIR web services and a new genome annotation release (TAIR7) in April 2007. A combination of manual and computational methods were used to generate this release, which contains 27 029 protein-coding genes, 3889 pseudogenes or transposable elements and 1123 ncRNAs (32 041 genes in all, 37 019 gene models). A total of 681 new genes and 1002 new splice variants were added. Overall, 10 098 loci (one-third of all loci from the previous TAIR6 release) were updated for the TAIR7 release.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic acids research
                Oxford University Press (OUP)
                1362-4962
                0305-1048
                Jan 2010
                : 38
                : Database issue
                Affiliations
                [1 ] Evolutionary Systems Biology Group, SRI International, Lawrence Berkeley National Laboratory, USA.
                Article
                gkp1019
                10.1093/nar/gkp1019
                2808919
                20015972
                00b27296-f52d-4e65-96b8-c763db7a3334
                History

                Comments

                Comment on this article