140
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges in analysis and interpretation of microsatellite data for population genetic studies.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.

          Related collections

          Most cited references302

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of average heterozygosity and genetic distance from a small number of individuals.

          M Nei (1978)
          The magnitudes of the systematic biases involved in sample heterozygosity and sample genetic distances are evaluated, and formulae for obtaining unbiased estimates of average heterozygosity and genetic distance are developed. It is also shown that the number of individuals to be used for estimating average heterozygosity can be very small if a large number of loci are studied and the average heterozygosity is low. The number of individuals to be used for estimating genetic distance can also be very small if the genetic distance is large and the average heterozygosity of the two species compared is low.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Easy quantitative assessment of genome editing by sequence trace decomposition

            The efficacy and the mutation spectrum of genome editing methods can vary substantially depending on the targeted sequence. A simple, quick assay to accurately characterize and quantify the induced mutations is therefore needed. Here we present TIDE, a method for this purpose that requires only a pair of PCR reactions and two standard capillary sequencing runs. The sequence traces are then analyzed by a specially developed decomposition algorithm that identifies the major induced mutations in the projected editing site and accurately determines their frequency in a cell population. This method is cost-effective and quick, and it provides much more detailed information than current enzyme-based assays. An interactive web tool for automated decomposition of the sequence traces is available. TIDE greatly facilitates the testing and rational design of genome editing strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of reduction in population size using data from microsatellite loci.

              We demonstrate that the mean ratio of the number of alleles to the range in allele size, which we term M, calculated from a population sample of microsatellite loci, can be used to detect reductions in population size. Using simulations, we show that, for a general class of mutation models, the value of M decreases when a population is reduced in size. The magnitude of the decrease is positively correlated with the severity and duration of the reduction in size. We also find that the rate of recovery of M following a reduction in size is positively correlated with post-reduction population size, but that recovery occurs in both small and large populations. This indicates that M can distinguish between populations that have been recently reduced in size and those which have been small for a long time. We employ M to develop a statistical test for recent reductions in population size that can detect such changes for more than 100 generations with the post-reduction demographic scenarios we examine. We also compute M for a variety of populations and species using microsatellite data collected from the literature. We find that the value of M consistently predicts the reported demographic history for these populations. This method, and others like it, promises to be an important tool for the conservation and management of populations that are in need of intervention or recovery.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecology and evolution
                Wiley
                2045-7758
                2045-7758
                Nov 2014
                : 4
                : 22
                Affiliations
                [1 ] Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616.
                Article
                10.1002/ece3.1305
                4267876
                25540699
                71dac1de-6c3c-4881-b1fc-413a523eabc7
                History

                Data analysis,microsatellite,population genetics,population structure

                Comments

                Comment on this article