Blog
About

25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found
      Is Open Access

      SPACE-BASED TESTS OF GRAVITY WITH LASER RANGING

      International Journal of Modern Physics D

      World Scientific Pub Co Pte Lt

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          A test of general relativity using radio links with the Cassini spacecraft.

           B Bertotti,  L Iess,  P Tortora (2003)
          According to general relativity, photons are deflected and delayed by the curvature of space-time produced by any mass. The bending and delay are proportional to gamma + 1, where the parameter gamma is unity in general relativity but zero in the newtonian model of gravity. The quantity gamma - 1 measures the degree to which gravity is not a purely geometric effect and is affected by other fields; such fields may have strongly influenced the early Universe, but would have now weakened so as to produce tiny--but still detectable--effects. Several experiments have confirmed to an accuracy of approximately 0.1% the predictions for the deflection and delay of photons produced by the Sun. Here we report a measurement of the frequency shift of radio photons to and from the Cassini spacecraft as they passed near the Sun. Our result, gamma = 1 + (2.1 +/- 2.3) x 10(-5), agrees with the predictions of standard general relativity with a sensitivity that approaches the level at which, theoretically, deviations are expected in some cosmological models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lunar laser ranging: a continuing legacy of the apollo program.

            On 21 July 1969, during the first manned lunar mission, Apollo 11, the first retroreflector array was placed on the moon, enabling highly accurate measurements of the Earthmoon separation by means of laser ranging. Lunar laser ranging (LLR) turns the Earthmoon system into a laboratory for a broad range of investigations, including astronomy, lunar science, gravitational physics, geodesy, and geodynamics. Contributions from LLR include the three-orders-of-magnitude improvement in accuracy in the lunar ephemeris, a several-orders-of-magnitude improvement in the measurement of the variations in the moon's rotation, and the verification of the principle of equivalence for massive bodies with unprecedented accuracy. Lunar laser ranging analysis has provided measurements of the Earth's precession, the moon's tidal acceleration, and lunar rotational dissipation. These scientific results, current technological developments, and prospects for the future are discussed here.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Relativity parameters determined from lunar laser ranging

                Bookmark

                Author and article information

                Journal
                10.1142/S0218271807011838

                Comments

                Comment on this article