36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligodendrocyte precursor cells (OPCs) are abundant in the adult central nervous system, and have the capacity to regenerate oligodendrocytes and myelin. However, in inflammatory diseases such as multiple sclerosis (MS) remyelination is often incomplete. To investigate how neuroinflammation influences OPCs, we perform in vivo fate-tracing in an inflammatory demyelinating mouse model. Here we report that OPC differentiation is inhibited by both effector T cells and IFNγ overexpression by astrocytes. IFNγ also reduces the absolute number of OPCs and alters remaining OPCs by inducing the immunoproteasome and MHC class I. In vitro, OPCs exposed to IFNγ cross-present antigen to cytotoxic CD8 T cells, resulting in OPC death. In human demyelinated MS brain lesions, but not normal appearing white matter, oligodendroglia exhibit enhanced expression of the immunoproteasome subunit PSMB8. Therefore, OPCs may be co-opted by the immune system in MS to perpetuate the autoimmune response, suggesting that inhibiting immune activation of OPCs may facilitate remyelination.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          T cell receptor antagonist peptides induce positive selection.

          We have used organ culture of fetal thymic lobes from T cell receptor (TCR) transgenic beta 2M(-/-) mice to study the role of peptides in positive selection. The TCR used was from a CD8+ T cell specific for ovalbumin 257-264 in the context of Kb. Several peptides with the ability to induce positive selection were identified. These peptide-selected thymocytes have the same phenotype as mature CD8+ T cells and can respond to antigen. Those peptides with the ability to induce positive selection were all variants of the antigenic peptide and were identified as TCR antagonist peptides for this receptor. One peptide tested, E1, induced positive selection on the beta 2M(-/-) background but negative selection on the beta 2M(+/-) background. These results show that the process of positive selection is exquisitely peptide specific and sensitive to extremely low ligand density and support the notion that low efficacy ligands mediate positive selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens.

            Cytotoxic T lymphocytes (CTL) respond to antigenic peptides presented on MHC class I molecules. On most cells, these peptides are exclusively of endogenous, cytosolic origin. Bone marrow-derived antigen-presenting cells, however, harbor a unique pathway for MHC I presentation of exogenous antigens. This mechanism permits cross-presentation of pathogen-infected cells and the priming of CTL responses against intracellular microbial infections. Here, we report a novel diphtheria toxin-based system that allows the inducible, short-term ablation of dendritic cells (DC) in vivo. We show that in vivo DC are required to cross-prime CTL precursors. Our results thus define a unique in vivo role of DC, i.e., the sensitization of the immune system for cell-associated antigens. DC-depleted mice fail to mount CTL responses to infection with the intracellular bacterium Listeria monocytogenes and the rodent malaria parasite Plasmodium yoelii.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death.

              Fas/APO-1 and p55 tumor necrosis factor (TNF) receptor (p55-R) activate cellular mechanisms that result in cell death. Upon activation of these receptors, Fas/APO-1 binds a protein called MORT1 (or FADD) and p55-R binds a protein called TRADD. MORT1 and TRADD can also bind to each other. We have cloned a novel protein, MACH, that binds to MORT1. This protein exists in multiple isoforms, some of which contain a region that has proteolytic activity and shows marked sequence homology to proteases of the ICE/CED-3 family. Cellular expression of the proteolytic MACH isoforms results in cell death. Expression of MACH isoforms that contain an incomplete ICE/CED-3 region provides effective protection against the cytotoxicity induced by Fas/APO-1 or p55-R triggering. These findings suggest that MACH is the most upstream enzymatic component in the Fas/APO-1- and p55-R-induced cell death signaling cascades.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2019
                August 29 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-11638-3
                8aa57a1b-a1c3-45cd-ae57-b32745e28425
                © 2019

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article