929
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How do you feel--now? The anterior insula and human awareness.

      Nature reviews. Neuroscience
      Acoustic Stimulation, Awareness, physiology, Cerebral Cortex, anatomy & histology, cytology, Cognition, Decision Making, Emotions, Humans, Neurons, Perception, Photic Stimulation

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Empathy for pain involves the affective but not sensory components of pain.

          Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Does rejection hurt? An FMRI study of social exclusion.

            A neuroimaging study examined the neural correlates of social exclusion and tested the hypothesis that the brain bases of social pain are similar to those of physical pain. Participants were scanned while playing a virtual ball-tossing game in which they were ultimately excluded. Paralleling results from physical pain studies, the anterior cingulate cortex (ACC) was more active during exclusion than during inclusion and correlated positively with self-reported distress. Right ventral prefrontal cortex (RVPFC) was active during exclusion and correlated negatively with self-reported distress. ACC changes mediated the RVPFC-distress correlation, suggesting that RVPFC regulates the distress of social exclusion by disrupting ACC activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An insular view of anxiety.

              We propose a general hypothesis that integrates affective and cognitive processing with neuroanatomy to explain anxiety pronenes. The premise is that individuals who are prone to anxiety show an altered interoceptive prediction signal, i.e., manifest augmented detection of the difference between the observed and expected body state. As a consequence, the increased prediction signal of a prospective aversive body state triggers an increase in anxious affect, worrisome thoughts and other avoidance behaviors. The anterior insula is proposed to play a key role in this process. Further testing of this model--which should include investigation of genetic and environmental influences--may lead to the development of novel treatments that attenuate this altered interoceptive prediction signal in patients with anxiety disorders.
                Bookmark

                Author and article information

                Comments

                Comment on this article