32
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Effects of Aging on Renal Function and Regenerative Capacity

      review-article
      , *
      Nephron Clinical Practice
      S. Karger AG
      Aging, Kidney, Renal function, Regenerative capacity

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Along with the increase in aging of our population, the proportion of older patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) is on the rise as a result of the accumulation of comorbidities as well as biological processes associated with aging. Older patients with acute kidney injury (AKI) comprise an increasing proportion of patients with CKD/ESRD as well. In this review, we will discuss biological processes of aging that predispose patients to AKI and CKD.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.

          Severe acute renal failure (ARF) remains a common, largely treatment-resistant clinical problem with disturbingly high mortality rates. Therefore, we tested whether administration of multipotent mesenchymal stem cells (MSC) to anesthetized rats with ischemia-reperfusion-induced ARF (40-min bilateral renal pedicle clamping) could improve the outcome through amelioration of inflammatory, vascular, and apoptotic/necrotic manifestations of ischemic kidney injury. Accordingly, intracarotid administration of MSC (approximately 10(6)/animal) either immediately or 24 h after renal ischemia resulted in significantly improved renal function, higher proliferative and lower apoptotic indexes, as well as lower renal injury and unchanged leukocyte infiltration scores. Such renoprotection was not obtained with syngeneic fibroblasts. Using in vivo two-photon laser confocal microscopy, fluorescence-labeled MSC were detected early after injection in glomeruli, and low numbers attached at microvasculature sites. However, within 3 days of administration, none of the administered MSC had differentiated into a tubular or endothelial cell phenotype. At 24 h after injury, expression of proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and inducible nitric oxide synthase was significantly reduced and that of anti-inflammatory IL-10 and bFGF, TGF-alpha, and Bcl-2 was highly upregulated in treated kidneys. We conclude that the early, highly significant renoprotection obtained with MSC is of considerable therapeutic promise for the cell-based management of clinical ARF. The beneficial effects of MSC are primarily mediated via complex paracrine actions and not by their differentiation into target cells, which, as such, appears to be a more protracted response that may become important in late-stage organ repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Klotho deficiency causes vascular calcification in chronic kidney disease.

            Soft-tissue calcification is a prominent feature in both chronic kidney disease (CKD) and experimental Klotho deficiency, but whether Klotho deficiency is responsible for the calcification in CKD is unknown. Here, wild-type mice with CKD had very low renal, plasma, and urinary levels of Klotho. In humans, we observed a graded reduction in urinary Klotho starting at an early stage of CKD and progressing with loss of renal function. Despite induction of CKD, transgenic mice that overexpressed Klotho had preserved levels of Klotho, enhanced phosphaturia, better renal function, and much less calcification compared with wild-type mice with CKD. Conversely, Klotho-haploinsufficient mice with CKD had undetectable levels of Klotho, worse renal function, and severe calcification. The beneficial effect of Klotho on vascular calcification was a result of more than its effect on renal function and phosphatemia, suggesting a direct effect of Klotho on the vasculature. In vitro, Klotho suppressed Na(+)-dependent uptake of phosphate and mineralization induced by high phosphate and preserved differentiation in vascular smooth muscle cells. In summary, Klotho is an early biomarker for CKD, and Klotho deficiency contributes to soft-tissue calcification in CKD. Klotho ameliorates vascular calcification by enhancing phosphaturia, preserving glomerular filtration, and directly inhibiting phosphate uptake by vascular smooth muscle. Replacement of Klotho may have therapeutic potential for CKD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective.

              Klotho is an antiaging substance with pleiotropic actions including regulation of mineral metabolism. It is highly expressed in the kidney and is present in the circulation and urine but its role in acute kidney injury (AKI) is unknown. We found that ischemia-reperfusion injury (IRI) in rodents reduced Klotho in the kidneys, urine, and blood, all of which were restored upon recovery. Reduction in kidney and plasma Klotho levels were earlier than that of neutrophil gelatinase-associated lipocalin (NGAL), a known biomarker of kidney injury. Patients with AKI were found to have drastic reductions in urinary Klotho. To examine whether Klotho has a pathogenic role, we induced IRI in mice with different endogenous Klotho levels ranging from heterozygous Klotho haploinsufficient, to wild-type (WT), to transgenic mice overexpressing Klotho. Klotho levels in AKI were lower in haploinsufficient and higher in transgenic compared with WT mice. The haploinsufficient mice had more extensive functional and histological alterations compared with WT mice, whereas these changes were milder in overexpressing transgenic mice, implying that Klotho is renoprotective. Rats with AKI given recombinant Klotho had higher Klotho protein, less kidney damage, and lower NGAL than rats with AKI given vehicle. Hence, AKI is a state of acute reversible Klotho deficiency, low Klotho exacerbates kidney injury and its restoration attenuates renal damage and promotes recovery from AKI. Thus, endogenous Klotho not only serves as an early biomarker for AKI but also functions as a renoprotective factor with therapeutic potential.
                Bookmark

                Author and article information

                Journal
                NEC
                Nephron Clin Pract
                10.1159/issn.1660-2110
                Nephron Clinical Practice
                S. Karger AG
                1660-2110
                2014
                September 2014
                24 September 2014
                : 127
                : 1-4
                : 15-20
                Affiliations
                Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Va., USA
                Author notes
                *Emaad M. Abdel-Rahman, MD, PhD, Division of Nephrology, Box 800133, Charlottesville, VA 22908 (USA), E-Mail ea6n@virginia.edu
                Article
                363708 Nephron Clin Pract 2014;127:15-20
                10.1159/000363708
                25343814
                301457f5-7c1d-4a22-8996-8fa0a20f0d92
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Tables: 2, Pages: 6
                Categories
                Review

                Cardiovascular Medicine,Nephrology
                Aging,Kidney,Renal function,Regenerative capacity
                Cardiovascular Medicine, Nephrology
                Aging, Kidney, Renal function, Regenerative capacity

                Comments

                Comment on this article