65
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aplicações farmacêuticas de polímeros

      Polymers
      FapUNIFESP (SciELO)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Os polímeros representam uma das classes de materiais mais versáteis disponíveis para aplicações em diversas áreas, inclusive a farmacêutica. Polímeros naturais, naturais modificados e sintéticos são empregados como excipientes farmacêuticos para a formulação de cosméticos e medicamentos de liberação convencional e de liberação modificada. Nos dias atuais, polímeros são desenvolvidos para atuarem como moduladores e direcionadores da liberação de fármacos em sítios específicos no organismo. Polímeros biodegradáveis, bioadesivos, biomiméticos e hidrogéis responsivos têm sido amplamente incluídos em formulações farmacêuticas. Os avanços na idealização de novos Sistemas de Liberação de Fármacos somente são e serão permitidos a partir do desenvolvimento de polímeros projetados especificamente para a área farmacêutica. Neste sentido, o presente artigo visa a revisar e apresentar informações sobre o uso de polímeros em aplicações farmacêuticas que poderão ser úteis no planejamento de novos sistemas com desempenhos superiores. Polymers are very versatile for a series of applications including pharmaceutical applications. Natural polymers, modified natural polymers and synthetic polymers are employed as excipients in the manufacture of cosmetics and systems for conventional and modified delivery of drugs. More recently, polymers have been developed to be able to modulate and deliver drugs to target places. Biodegradable polymers, bioadhesives, biomimetic materials and responsive hydrogels have been included in pharmaceutical formulations. The advances in the concept of new drug delivery systems will only be possible with the development of polymers specifically designed for the pharmaceutical field. Therefore, this manuscript intends to review and report information regarding the use of polymers in pharmaceutical applications that can be useful in designing new systems with improved performance.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dawning era of polymer therapeutics.

            As we enter the twenty-first century, research at the interface of polymer chemistry and the biomedical sciences has given rise to the first nano-sized (5-100 nm) polymer-based pharmaceuticals, the 'polymer therapeutics'. Polymer therapeutics include rationally designed macromolecular drugs, polymer-drug and polymer-protein conjugates, polymeric micelles containing covalently bound drug, and polyplexes for DNA delivery. The successful clinical application of polymer-protein conjugates, and promising clinical results arising from trials with polymer-anticancer-drug conjugates, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A reversible wet/dry adhesive inspired by mussels and geckos.

              The adhesive strategy of the gecko relies on foot pads composed of specialized keratinous foot-hairs called setae, which are subdivided into terminal spatulae of approximately 200 nm (ref. 1). Contact between the gecko foot and an opposing surface generates adhesive forces that are sufficient to allow the gecko to cling onto vertical and even inverted surfaces. Although strong, the adhesion is temporary, permitting rapid detachment and reattachment of the gecko foot during locomotion. Researchers have attempted to capture these properties of gecko adhesive in synthetic mimics with nanoscale surface features reminiscent of setae; however, maintenance of adhesive performance over many cycles has been elusive, and gecko adhesion is greatly diminished upon full immersion in water. Here we report a hybrid biologically inspired adhesive consisting of an array of nanofabricated polymer pillars coated with a thin layer of a synthetic polymer that mimics the wet adhesive proteins found in mussel holdfasts. Wet adhesion of the nanostructured polymer pillar arrays increased nearly 15-fold when coated with mussel-mimetic polymer. The system maintains its adhesive performance for over a thousand contact cycles in both dry and wet environments. This hybrid adhesive, which combines the salient design elements of both gecko and mussel adhesives, should be useful for reversible attachment to a variety of surfaces in any environment.
                Bookmark

                Author and article information

                Journal
                10.1590/S0104-14282010005000009

                Comments

                Comment on this article