71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Community Outbreak of Cryptosporidiosis in Sydney Associated with a Public Swimming Facility: A Case-Control Study

      Interdisciplinary Perspectives on Infectious Diseases
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In February, 2008, the South Eastern Sydney Illawarra Public Health Unit investigated an outbreak of cryptosporidiosis within the south east region of Sydney, Australia. Thirty-one cases with laboratory-confirmed cryptosporidiosis and 97 age- and geographically matched controls selected by random digit dialling were recruited into a case-control study and interviewed for infection risk factors. Cryptosporidiosis was associated with swimming at Facility A (matched odds ratio = 19.4, 95% confidence interval: 3.7–100.8) and exposure to household contacts with diarrhoea (matched odds ratio = 7.7, 95% confidence interval: 1.9–31.4) in multivariable conditional logistic regression models. A protective effect for any animal contact was also found (matched odds ratio = 0.2, 95% confidence interval: 0.1–0.7). Cryptosporidium hominis subtype IbA10G2 was identified in 8 of 11 diagnostic stool samples available for cases. This investigation reaffirms the importance of public swimming pools as potential sources of Cryptosporidium infection and ensuring their compliance with water-quality guidelines. The protective effect of animal contact may be suggestive of past exposure leading to immunity.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The infectivity of Cryptosporidium parvum in healthy volunteers.

          Small numbers of Cryptosporidium parvum oocysts can contaminate even treated drinking water, and ingestion of oocysts can cause diarrheal disease in normal as well as immunocompromised hosts. Since the number of organisms necessary to cause infection in humans is unknown, we performed a study to determine the infective dose of the parasite in healthy adults. After providing informed consent, 29 healthy volunteers without evidence of previous C. parvum infection, as determined by the absence of anti-cryptosporidium-specific antibodies, were given a single dose of 30 to 1 million C. parvum oocysts obtained from a calf. They were then monitored for oocyst excretion and clinical illness for eight weeks. Household contacts were monitored for secondary spread. Of the 16 subjects who received an intended dose of 300 or more oocysts, 14 (88 percent) became infected. After a dose of 30 oocysts, one of five subjects (20 percent) became infected, whereas at a dose of 1000 or more oocysts, seven of seven became infected. The median infective dose, calculated by linear regression, was 132 oocysts. Of the 18 subjects who excreted oocysts after the challenge dose, 11 had enteric symptoms and 7 (39 percent) had clinical cryptosporidiosis, consisting of diarrhea plus at least one other enteric symptom. All recovered, and there were no secondary cases of diarrhea among household contacts. In healthy adults with no serologic evidence of past infection with C. parvum, a low dose of C. parvum oocysts is sufficient to cause infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

            Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virulence of three distinct Cryptosporidium parvum isolates for healthy adults.

              The infectivity of three Cryptosporidium parvum isolates (Iowa [calf], UCP [calf], and TAMU [horse]) of the C genotype was investigated in healthy adults. After exposure, volunteers recorded the number and form of stools passed and symptoms experienced. Oocyst excretion was assessed by immunofluorescence. The ID50 differed among isolates: Iowa, 87 (SE, 19; 95% confidence interval [CI], 48.67-126); UCP, 1042 (SE, 1000; 95% CI, 0-3004); and TAMU, 9 oocysts (SE, 2.34; 95% CI, 4.46-13.65); TAMU versus Iowa, P=.002 or UCP, P=.019. Isolates also differed significantly (P=.045) in attack rate between TAMU (86%) and Iowa (52%) or UCP (59%). A trend toward a longer duration of diarrhea was seen for the TAMU (94.5 h) versus UCP (81.6 h) and Iowa (64.2 h) isolates. C. parvum isolates of the C genotype differ in their infectivity for humans.
                Bookmark

                Author and article information

                Journal
                10.1155/2011/341065
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article