95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Objective comparison of particle tracking methods.

      Nature Methods
      Image Interpretation, Computer-Assisted, standards, Microscopy, Fluorescence, methods

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The fluorescent toolbox for assessing protein location and function.

          Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Algorithms for the Assignment and Transportation Problems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-particle tracking: applications to membrane dynamics.

              Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
                Bookmark

                Author and article information

                Journal
                24441936
                4131736
                10.1038/nmeth.2808

                Image Interpretation, Computer-Assisted,standards,Microscopy, Fluorescence,methods

                Comments

                Comment on this article