3,940
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, we demonstrated that Prx II is important for survival of the gefitinib-resistant A549 (A549/GR) cell line, an NSCLC cell line derived by repeated exposure to gefitinib. Therefore, in this study, we used A549/GR cells to investigate the role of Prx II in GR NSCLC stemness. Initially, to explore the stemness characteristics and investigate the association of Prx II with those stemness characteristics, we successfully isolated a stem cell-like population from A549/GR cells. A549/GR CD133+ cells possessed important cancer stemness characteristics, including the abilities to undergo metastasis, angiogenesis, self-renewal, and to express stemness genes and epithelial–mesenchymal transition (EMT) markers. However, those characteristics were abolished by knocking down Prx II expression. MicroRNA 122 (miR-122) targets Prx II in A549/GR cancer stem cells (CSCs), thereby inhibiting the stemness characteristics in vitro and in vivo. Next, we investigate whether miR-122 overexpression was associated with Prx II expression and Prx-II-induced stemness characteristics, we transfected miR-122 into A549/GR CSCs. MiR-122 inhibited A549/GR stemness by downregulating the Hedgehog, Notch, and Wnt/β-catenin pathways. Taken together, our data suggest that Prx II promotes A549/GR stemness, and that targeting Prx II and miR-122 is a potentially viable strategy for anti-cancer-stem cell therapy in GR NSCLCs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

          Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD133 as a marker for cancer stem cells: progresses and concerns.

            Increasing evidence supports the cancer stem cell hypothesis, which postulates that cancer stem cells are responsible for tumor initiation, metastasis, and resistance to treatments. Therefore, they are the cells to target to cure a cancer. To study the behavior of cancer stem cells, markers for prospective isolation of cancer stem cells are crucial. Recently, CD133 has been used extensively as a marker for the identification of stem cells from normal and cancerous tissues. Several more recent studies, however, indicate that CD133 are expressed in differentiated epithelial cells in various organs, and CD133-negative cancer cells can also initiate tumors. The findings suggest that CD133 is not restricted to somatic stem cells and cancer stem cells. However, in many cases CD133 may be used in combination with other markers or methods to acquire stem cells. In this review, we summarize findings in CD133 expression in various tissues and critically discuss its applications in stem cell isolation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxiredoxin 1 and its role in cell signaling.

              Peroxiredoxins (Prdxs) are a family of small (22-27 kDa) nonseleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H(2)O(2), organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than "just simple peroxidases". This hypothesis has been discussed elegantly in recent review articles, considering "over"-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (C(P)) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid, which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones with questionable H(2)O(2)-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H(2)O(2) regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H(2)O(2) modulating cell signaling via Prdxs by discussing: (1) the activity of Prdxs towards H(2)O(2); (2) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; (3) the availability of Prdxs reducing systems, such as thioredoxin and sulfiredoxin and lastly, (4) Prdx1 interacting signaling molecules.
                Bookmark

                Author and article information

                Journal
                Cancer Gene Therapy
                Cancer Gene Ther
                Springer Nature America, Inc
                0929-1903
                1476-5500
                October 19 2018
                Article
                10.1038/s41417-018-0050-1
                d13f580e-f2a0-4f51-9b3b-3a4e26b4eaca
                © 2018

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article