Blog
About

27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins

      Nature

      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: not found
          • Article: not found

          Ultrafast spin dynamics in ferromagnetic nickel.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ultrafast optical manipulation of magnetic order

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Femtosecond modification of electron localization and transfer of angular momentum in nickel.

              The rapidly increasing information density required of modern magnetic data storage devices raises the question of the fundamental limits in bit size and writing speed. At present, the magnetization reversal of a bit can occur as quickly as 200 ps (ref. 1). A fundamental limit has been explored by using intense magnetic-field pulses of 2 ps duration leading to a non-deterministic magnetization reversal. For this process, dissipation of spin angular momentum to other degrees of freedom on an ultrafast timescale is crucial. An even faster regime down to 100 fs or below might be reached by non-thermal control of magnetization with femtosecond laser radiation. Here, we show that an efficient novel channel for angular momentum dissipation to the lattice can be opened by femtosecond laser excitation of a ferromagnet. For the first time, the quenching of spin angular momentum and its transfer to the lattice with a time constant of 120+/-70 fs is determined unambiguously with X-ray magnetic circular dichroism. We report the first femtosecond time-resolved X-ray absorption spectroscopy data over an entire absorption edge, which are consistent with an unexpected increase in valence-electron localization during the first 120+/-50 fs, possibly providing the driving force behind femtosecond spin-lattice relaxation.
                Bookmark

                Author and article information

                Journal
                10.1038/nature09901

                http://www.springer.com/tdm

                Comments

                Comment on this article