534
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods

      Journal of Molecular Evolution
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogenetic Analysis: Models and Estimation Procedures

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial DNA sequences of primates: Tempo and mode of evolution

            We cloned and sequenced a segment of mitochondrial DNA from human, chimpanzee, gorilla, orangutan, and gibbon. This segment is 896 bp in length, contains the genes for three transfer RNAs and parts of two proteins, and is homologous in all 5 primates. The 5 sequences differ from one another by base substitutions at 283 positions and by a deletion of one base pair. The sequence differences range from 9 to 19% among species, in agreement with estimates from cleavage map comparisons, thus confirming that the rate of mtDNA evolution in primates is 5 to 10 times higher than in nuclear DNA. The most striking new finding to emerge from these comparisons is that transitions greatly outnumber transversions. Ninety-two percent of the differences among the most closely related species (human, chimpanzee, and gorilla) are transitions. For pairs of species with longer divergence times, the observed percentage of transitions falls until, in the case of comparisons between primates and non-primates, it reaches a value of 45. The time dependence is probably due to obliteration of the record of transitions by multiple substitutions at the same nucleotide site. This finding illustrates the importance of choosing closely related species for analysis of evolutionary process. The remarkable bias toward transitions in mtDNA evolution necessitates the revision of equations that correct for multiple substitutions at the same site. With revised equations, we calculated the incidence of silent and replacement substitutions in the two protein-coding genes. The silent substitution rate is 4 to 6 times higher than the replacement rate, indicating strong functional constraints at replacement sites. Moreover, the silent rate for these two genes is about 10% per million years, a value 10 times higher than the silent rate for the nuclear genes studied so far. In addition, the mean substitution rate in the three mitochondrial tRNA genes is at least 100 times higher than in nuclear tRNA genes. Finally, genealogical analysis of the sequence differences supports the view that the human lineage branched off only slightly before the gorilla and chimpanzee lineages diverged and strengthens the hypothesis that humans are more related to gorillas and chimpanzees than is the orangutan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistical tests of models of DNA substitution.

              Penny et al. have written that "The most fundamental criterion for a scientific method is that the data must, in principle, be able to reject the model. Hardly any [phylogenetic] tree-reconstruction methods meet this simple requirement." The ability to reject models is of such great importance because the results of all phylogenetic analyses depend on their underlying models--to have confidence in the inferences, it is necessary to have confidence in the models. In this paper, a test statistic suggested by Cox is employed to test the adequacy of some statistical models of DNA sequence evolution used in the phylogenetic inference method introduced by Felsenstein. Monte Carlo simulations are used to assess significance levels. The resulting statistical tests provide an objective and very general assessment of all the components of a DNA substitution model; more specific versions of the test are devised to test individual components of a model. In all cases, the new analyses have the additional advantage that values of phylogenetic parameters do not have to be assumed in order to perform the tests.
                Bookmark

                Author and article information

                Journal
                10.1007/BF00160154

                Comments

                Comment on this article