24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Raman Spectroscopy for the Diagnosis of Intratubular Triamterene Crystallization

      Kidney International Reports
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The many facets of Raman spectroscopy for biomedical analysis.

          A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks-such as Raman4clinics and CLIRSPEC on a European level-and early adopters in the translation, dissemination, and validation of new methods are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug-induced crystal nephropathy: an update.

            Several medications that are insoluble in human urine are known to precipitate within the renal tubules. Intratubular precipitation of either exogenously administered medications or endogenous crystals (induced by certain drugs) can promote chronic and acute kidney injury, termed crystal nephropathy. Clinical settings that enhance the risk of drug or endogenous crystal precipitation within the kidney tubules include true or effective intravascular volume depletion, underlying kidney disease, and certain metabolic disturbances that promote changes in urinary pH favoring crystal precipitation. Identify and review previously described and recently recognized medications that cause crystal nephropathy. A literature review was performed, using PubMed, Ovid, and Google Scholar, focusing on drugs (sulfadiazine, acyclovir, indinavir, triamterene, methotrexate (MTX), orlistat, oral sodium phosphate preparation, ciprofloxacin) that cause crystal nephropathy. Sulfadiazine, acyclovir, indinavir, triamterene, and MTX are known to cause crystal nephropathy. Recently, several medications, including orlistat, ciprofloxacin, and oral sodium phosphate solution, along with underlying risk factors have been described as causing crystal nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adenine phosphoribosyltransferase deficiency.

              Complete adenine phosphoribosyltransferase (APRT) deficiency is a rare inherited metabolic disorder that leads to the formation and hyperexcretion of 2,8-dihydroxyadenine (DHA) into urine. The low solubility of DHA results in precipitation of this compound and the formation of urinary crystals and stones. The disease can present as recurrent urolithiasis or nephropathy secondary to crystal precipitation into renal parenchyma (DHA nephropathy). The diagnostic tools available-including stone analysis, crystalluria, and APRT activity measurement-make the diagnosis easy to confirm when APRT deficiency is suspected. However, the disease can present at any age, and the variability of symptoms can present a diagnostic challenge to many physicians. The early recognition and treatment of APRT deficiency are of crucial importance for preventing irreversible loss of renal function, which still occurs in a non-negligible proportion of cases. This review summarizes the genetic and metabolic mechanisms underlying stone formation and renal disease, along with the diagnosis and management of APRT deficiency.
                Bookmark

                Author and article information

                Journal
                10.1016/j.ekir.2018.03.010
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article