112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gctf: Real-time CTF determination and correction

      Journal of Structural Biology
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          How cryo-EM is revolutionizing structural biology.

          For many years, structure determination of biological macromolecules by cryo-electron microscopy (cryo-EM) was limited to large complexes or low-resolution models. With recent advances in electron detection and image processing, the resolution by cryo-EM is now beginning to rival X-ray crystallography. A new generation of electron detectors record images with unprecedented quality, while new image-processing tools correct for sample movements and classify images according to different structural states. Combined, these advances yield density maps with sufficient detail to deduce the atomic structure for a range of specimens. Here, we review the recent advances and illustrate the exciting new opportunities that they offer to structural biology research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ribosome. The structure of the human mitochondrial ribosome.

            The highly divergent ribosomes of human mitochondria (mitoribosomes) synthesize 13 essential proteins of oxidative phosphorylation complexes. We have determined the structure of the intact mitoribosome to 3.5 angstrom resolution by means of single-particle electron cryogenic microscopy. It reveals 80 extensively interconnected proteins, 36 of which are specific to mitochondria, and three ribosomal RNA molecules. The head domain of the small subunit, particularly the messenger (mRNA) channel, is highly remodeled. Many intersubunit bridges are specific to the mitoribosome, which adopts conformations involving ratcheting or rolling of the small subunit that are distinct from those seen in bacteria or eukaryotes. An intrinsic guanosine triphosphatase mediates a contact between the head and central protuberance. The structure provides a reference for analysis of mutations that cause severe pathologies and for future drug design. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the TRPA1 ion channel suggests regulatory mechanisms

              The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.
                Bookmark

                Author and article information

                Journal
                10.1016/j.jsb.2015.11.003
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article