34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection

      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The spike protein of SARS-CoV — a target for vaccine and therapeutic development

          Key Points This Review provides an overview on the spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) as a target for the development of vaccines and therapeutics for the prevention and treatment of SARS. SARS is a newly emerging infectious disease, caused by SARS-CoV, a novel coronavirus that caused a global outbreak of SARS. SARS-CoV S protein mediates binding of the virus with its receptor angiotensin-converting enzyme 2 and promotes the fusion between the viral and host cell membranes and virus entry into the host cell. SARS-CoV S protein induces humoral and cellular immune responses against SARS-CoV. SARS S protein is the target of new SARS vaccines. These vaccines are based on SARS-CoV full-length S protein and its receptor-binding domain, including DNA-, viral vector- and subunit-based vaccines Peptides, antibodies, organic compounds and short interfering RNAs are additional anti-SARS-CoV therapeutics that target the S protein. The work on SARS-CoV S protein-based vaccines and drugs will be useful as a model for the development of prophylactic strategies and therapies against other viruses with class I fusion proteins that can cause emerging infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coronavirus avian infectious bronchitis virus.

            Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery

              Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core–shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.
                Bookmark

                Author and article information

                Journal
                10.1016/j.biomaterials.2016.08.018
                https://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article