30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration.

      International Journal of Molecular Sciences
      MDPI
      AF, IVD, disc degeneration, histopathology scoring, quantitative histology

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i-vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3-6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: not found

          What is intervertebral disc degeneration, and what causes it?

          Review and reinterpretation of existing literature. To suggest how intervertebral disc degeneration might be distinguished from the physiologic processes of growth, aging, healing, and adaptive remodeling. The research literature concerning disc degeneration is particularly diverse, and there are no accepted definitions to guide biomedical research, or medicolegal practice. The process of disc degeneration is an aberrant, cell-mediated response to progressive structural failure. A degenerate disc is one with structural failure combined with accelerated or advanced signs of aging. Early degenerative changes should refer to accelerated age-related changes in a structurally intact disc. Degenerative disc disease should be applied to a degenerate disc that is also painful. Structural defects such as endplate fracture, radial fissures, and herniation are easily detected, unambiguous markers of impaired disc function. They are not inevitable with age and are more closely related to pain than any other feature of aging discs. Structural failure is irreversible because adult discs have limited healing potential. It also progresses by physical and biologic mechanisms, and, therefore, is a suitable marker for a degenerative process. Biologic progression occurs because structural failure uncouples the local mechanical environment of disc cells from the overall loading of the disc, so that disc cell responses can be inappropriate or "aberrant." Animal models confirm that cell-mediated changes always follow structural failure caused by trauma. This definition of disc degeneration simplifies the issue of causality: excessive mechanical loading disrupts a disc's structure and precipitates a cascade of cell-mediated responses, leading to further disruption. Underlying causes of disc degeneration include genetic inheritance, age, inadequate metabolite transport, and loading history, all of which can weaken discs to such an extent that structural failure occurs during the activities of daily living. The other closely related definitions help to distinguish between degenerate and injured discs, and between discs that are and are not painful.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals.

            A cross-sectional population study of magnetic resonance imaging (MRI) changes. OBJECTIVE.: To examine the pattern and prevalence of lumbar spine MRI changes within a southern Chinese population and their relationship with back pain. Previous studies on MRI changes and back pain have used populations of asymptomatic individuals or patients presenting with back pain and sciatica. Thus, the prevalence and pattern of intervertebral disc degeneration within the population is not known. Lumbar spine MRIs were obtained in 1043 volunteers between 18 to 55 years of age. MRI changes including disc degeneration, herniation, anular tears (HIZ), and Schmorl's nodes were noted by 2 independent observers. Differences were settled by consensus. Disc degeneration was graded using Schneiderman's classification, and a total score (DDD score) was calculated by the summation of the Schneiderman's score for each lumbar level. A K-mean clustering program was used to group individuals into different patterns of degeneration. Forty percent of individuals under 30 years of age had lumbar intervertebral disc degeneration (LDD), the prevalence of LDD increasing progressively to over 90% by 50 to 55 years of age. There was a positive correlation between the DDD score and low back pain. L5-S1 and L4-L5 were the most commonly affected levels. Apart from the usual patterns of degeneration, some uncommon patterns of degeneration were identified, comprising of subjects with skip level lesions (intervening normal levels) and isolated upper or mid lumbar degeneration. LDD is common, and its incidence increases with age. In a population setting, there is a significant association of LDD on MRI with back pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutrition of the intervertebral disc.

              A review of the literature on disc nutrition. To summarize the information on disc nutrition in relation to disc degeneration. The disc is avascular, and the disc cells depend on diffusion from blood vessels at the disc's margins to supply the nutrients essential for cellular activity and viability and to remove metabolic wastes such as lactic acid. The nutrient supply can fail due to changes in blood supply, sclerosis of the subchondral bone or endplate calcification, all of which can block transport from blood supply to the disc or due to changes in cellular demand. A review of the studies on disc blood supply, solute transport, studies of solute transport in animal and human disc in vitro, and of theoretical modeling studies that have examined factors affecting disc nutrition. Small nutrients such as oxygen and glucose are supplied to the disc's cells virtually entirely by diffusion; convective transport, arising from load-induced fluid movement in and out of the disc, has virtually no direct influence on transport of these nutrients. Consequently, there are steep concentration gradients of oxygen, glucose, and lactic acid across the disc; oxygen and glucose concentrations are lowest in the center of the nucleus where lactic acid concentrations are greatest. The actual levels of concentration depend on the balance between diffusive transport and cellular demand and can fall to critical levels if the endplate calcifies or nutritional demand increases. Loss of nutrient supply can lead to cell death, loss of matrix production, and increase in matrix degradation and hence to disc degeneration.
                Bookmark

                Author and article information

                Journal
                28498326
                10.3390/ijms18051049

                AF,IVD,disc degeneration,histopathology scoring,quantitative histology

                Comments

                Comment on this article