10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prioritizing Parkinson’s disease genes using population-scale transcriptomic data

      , , ,
      Nature Communications
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-wide association studies (GWAS) have identified over 41 susceptibility loci associated with Parkinson’s Disease (PD) but identifying putative causal genes and the underlying mechanisms remains challenging. Here, we leverage large-scale transcriptomic datasets to prioritize genes that are likely to affect PD by using a transcriptome-wide association study (TWAS) approach. Using this approach, we identify 66 gene associations whose predicted expression or splicing levels in dorsolateral prefrontal cortex (DLFPC) and peripheral monocytes are significantly associated with PD risk. We uncover many novel genes associated with PD but also novel mechanisms for known associations such as MAPT, for which we find that variation in exon 3 splicing explains the common genetic association. Genes identified in our analyses belong to the same or related pathways including lysosomal and innate immune function. Overall, our study provides a strong foundation for further mechanistic studies that will elucidate the molecular drivers of PD.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A human phenome-interactome network of protein complexes implicated in genetic disorders.

          We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, computationally derived phenotype similarity score, permitting identification of previously unknown complexes likely to be associated with disease. Using a phenomic ranking of protein complexes linked to human disease, we developed a Bayesian predictor that in 298 of 669 linkage intervals correctly ranks the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type 2 diabetes and coronary heart disease. Our publicly available draft of protein complexes associated with pathology comprises 506 complexes, which reveal functional relationships between disease-promoting genes that will inform future experimentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Annotation-free quantification of RNA splicing using LeafCutter

            The excision of introns from pre-mRNA is an essential step in mRNA processing. We developed LeafCutter to study sample and population variation in intron splicing. LeafCutter identifies variable splicing events from short-read RNA-seq data and finds events of high complexity. Our approach obviates the need for transcript annotations and circumvents the challenges in estimating relative isoform or exon usage in complex splicing events. LeafCutter can be used both for detecting differential splicing between sample groups, and for mapping splicing quantitative trait loci (sQTLs). Compared to contemporary methods, we find 1.4–2.1 times more sQTLs, many of which help us ascribe molecular effects to disease-associated variants. Strikingly, transcriptome-wide associations between LeafCutter intron quantifications and 40 complex traits increased the number of associated disease genes at 5% FDR by an average of 2.1-fold as compared to using gene expression levels alone. LeafCutter is fast, scalable, easy to use, and available online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WASP: allele-specific software for robust molecular quantitative trait locus discovery

              Allele-specific sequencing reads provide a powerful signal for identifying molecular quantitative trait loci (QTLs), however they are challenging to analyze and prone to technical artefacts. Here we describe WASP, a suite of tools for unbiased allele-specific read mapping and discovery of molecular QTLs. Using simulated reads, RNA-seq reads and ChIP-seq reads, we demonstrate that WASP has a low error rate and is far more powerful than existing QTL mapping approaches.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Nature
                2041-1723
                December 2019
                March 1 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-08912-9
                6067780b-9cc7-4681-9098-5c0733e4581a
                © 2019

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article