79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting microRNAs in cancer: rationale, strategies and challenges.

      Nature reviews. Drug discovery
      Animals, Gene Expression Profiling, methods, trends, Gene Targeting, Humans, MicroRNAs, antagonists & inhibitors, metabolism, Neoplasms, genetics, therapy

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.

          MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by targeting the mRNA of protein-coding genes for either cleavage or repression of translation. The roles of miRNAs in lineage determination and proliferation as well as the location of several miRNA genes at sites of translocation breakpoints or deletions has led to the speculation that miRNAs could be important factors in the development or maintenance of the neoplastic state. Here we show that the highly malignant human brain tumor, glioblastoma, strongly over-expresses a specific miRNA, miR-21. Our studies show markedly elevated miR-21 levels in human glioblastoma tumor tissues, early-passage glioblastoma cultures, and in six established glioblastoma cell lines (A172, U87, U373, LN229, LN428, and LN308) compared with nonneoplastic fetal and adult brain tissues and compared with cultured nonneoplastic glial cells. Knockdown of miR-21 in cultured glioblastoma cells triggers activation of caspases and leads to increased apoptotic cell death. Our data suggest that aberrantly expressed miR-21 may contribute to the malignant phenotype by blocking expression of critical apoptosis-related genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of mammalian microRNA host genes and transcription units.

            To derive a global perspective on the transcription of microRNAs (miRNAs) in mammals, we annotated the genomic position and context of this class of noncoding RNAs (ncRNAs) in the human and mouse genomes. Of the 232 known mammalian miRNAs, we found that 161 overlap with 123 defined transcription units (TUs). We identified miRNAs within introns of 90 protein-coding genes with a broad spectrum of molecular functions, and in both introns and exons of 66 mRNA-like noncoding RNAs (mlncRNAs). In addition, novel families of miRNAs based on host gene identity were identified. The transcription patterns of all miRNA host genes were curated from a variety of sources illustrating spatial, temporal, and physiological regulation of miRNA expression. These findings strongly suggest that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAs ('exonic' and 'intronic') identified here may require slightly different mechanisms of biogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation.

              MicroRNAs (miRNAs) are small RNAs that function as posttranscriptional regulators of gene expression. miRNAs affect a variety of signaling pathways, and impaired miRNA regulation may contribute to the development of cancer and other diseases. Here we show that miRNA miR-10a interacts with the 5' untranslated region of mRNAs encoding ribosomal proteins to enhance their translation. miR-10a alleviates translational repression of the ribosomal protein mRNAs during amino acid starvation and is required for their translational induction following anisomycin treatment or overexpression of RAS. We show that miR-10a binds immediately downstream of the regulatory 5'TOP motif and that the 5'TOP regulatory complex and miR-10a are functionally interconnected. The results show that miR-10a may positively control global protein synthesis via the stimulation of ribosomal protein mRNA translation and ribosome biogenesis and hereby affect the ability of cells to undergo transformation.
                Bookmark

                Author and article information

                Journal
                20885409
                3904431
                10.1038/nrd3179

                Chemistry
                Animals,Gene Expression Profiling,methods,trends,Gene Targeting,Humans,MicroRNAs,antagonists & inhibitors,metabolism,Neoplasms,genetics,therapy

                Comments

                Comment on this article