22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floodlight Quantum Key Distribution: A Practical Route to Gbps Secret-Key Rates

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The channel loss incurred in long-distance transmission places a significant burden on quantum key distribution (QKD) systems: they must defeat a passive eavesdropper who detects all the light lost in the quantum channel and does so without disturbing the light that reaches the intended destination. The current QKD implementation with the highest long-distance secret-key rate meets this challenge by transmitting no more than one photon per bit [Opt. Express 21, 24550-24565 (2013)]. As a result, it cannot achieve the Gbps secret-key rate needed for one-time pad encryption of large data files unless an impractically large amount of multiplexing is employed. We introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number of photons per bit distributed over a much greater number of optical modes. FL-QKD offers security against the optimum frequency-domain collective attack by transmitting less than one photon per mode and using photon-coincidence channel monitoring, and it is completely immune to passive eavesdropping. More importantly, FL-QKD is capable of a 2 Gbps secret-key rate over a 50 km fiber link, without any multiplexing, using available equipment, i.e., no new technology need be developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its unprecedented secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art systems by two orders of magnitude.

          Related collections

          Author and article information

          Journal
          2015-10-29
          2016-07-07
          Article
          10.1103/PhysRevA.94.012322
          1510.08737
          7fa3a001-023b-4343-be7e-73f1af10999f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Phys. Rev. A 94, 012322 (2016)
          18 pages, 5 figures
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article