81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded.

      Bioinformatics
      Algorithms, Computer Graphics, Computer Simulation, Energy Transfer, Internet, Models, Chemical, Models, Molecular, Protein Conformation, Protein Folding, Proteins, analysis, chemistry, Sequence Alignment, methods, Sequence Analysis, Protein, Software, Structure-Activity Relationship, User-Computer Interface

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An easy-to-use, versatile and freely available graphic web server, FoldIndex is described: it predicts if a given protein sequence is intrinsically unfolded implementing the algorithm of Uversky and co-workers, which is based on the average residue hydrophobicity and net charge of the sequence. FoldIndex has an error rate comparable to that of more sophisticated fold prediction methods. Sliding windows permit identification of large regions within a protein that possess folding propensities different from those of the whole protein.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.

          A major challenge in the post-genome era will be determination of the functions of the encoded protein sequences. Since it is generally assumed that the function of a protein is closely linked to its three-dimensional structure, prediction or experimental determination of the library of protein structures is a matter of high priority. However, a large proportion of gene sequences appear to code not for folded, globular proteins, but for long stretches of amino acids that are likely to be either unfolded in solution or adopt non-globular structures of unknown conformation. Characterization of the conformational propensities and function of the non-globular protein sequences represents a major challenge. The high proportion of these sequences in the genomes of all organisms studied to date argues for important, as yet unknown functions, since there could be no other reason for their persistence throughout evolution. Clearly the assumption that a folded three-dimensional structure is necessary for function needs to be re-examined. Although the functions of many proteins are directly related to their three-dimensional structures, numerous proteins that lack intrinsic globular structure under physiological conditions have now been recognized. Such proteins are frequently involved in some of the most important regulatory functions in the cell, and the lack of intrinsic structure in many cases is relieved when the protein binds to its target molecule. The intrinsic lack of structure can confer functional advantages on a protein, including the ability to bind to several different targets. It also allows precise control over the thermodynamics of the binding process and provides a simple mechanism for inducibility by phosphorylation or through interaction with other components of the cellular machinery. Numerous examples of domains that are unstructured in solution but which become structured upon binding to the target have been noted in the areas of cell cycle control and both transcriptional and translational regulation, and unstructured domains are present in proteins that are targeted for rapid destruction. Since such proteins participate in critical cellular control mechanisms, it appears likely that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Why are ?natively unfolded? proteins unstructured under physiologic conditions?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Removing near-neighbour redundancy from large protein sequence collections.

              To maximize the chances of biological discovery, homology searching must use an up-to-date collection of sequences. However, the available sequence databases are growing rapidly and are partially redundant in content. This leads to increasing strain on CPU resources and decreasing density of first-hand annotation. These problems are addressed by clustering closely similar sequences to yield a covering of sequence space by a representative subset of sequences. No pair of sequences in the representative set has >90% mutual sequence identity. The representative set is derived by an exhaustive search for close similarities in the sequence database in which the need for explicit sequence alignment is significantly reduced by applying deca- and pentapeptide composition filters. The algorithm was applied to the union of the Swissprot, Swissnew, Trembl, Tremblnew, Genbank, PIR, Wormpep and PDB databases. The all-against-all comparison required to generate a representative set at 90% sequence identity was accomplished in 2 days CPU time, and the removal of fragments and close similarities yielded a size reduction of 46%, from 260 000 unique sequences to 140 000 representative sequences. The practical implications are (i) faster homology searches using, for example, Fasta or Blast, and (ii) unified annotation for all sequences clustered around a representative. As tens of thousands of sequence searches are performed daily world-wide, appropriate use of the non-redundant database can lead to major savings in computer resources, without loss of efficacy. A regularly updated non-redundant protein sequence database (nrdb90), a server for homology searches against nrdb90, and a Perl script (nrdb90.pl) implementing the algorithm are available for academic use from http://www.embl-ebi.ac. uk/holm/nrdb90. holm@embl-ebi.ac.uk
                Bookmark

                Author and article information

                Comments

                Comment on this article