30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Implantable Devices: Issues and Challenges

      Electronics
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Response of brain tissue to chronically implanted neural electrodes.

          Chronically implanted recording electrode arrays linked to prosthetics have the potential to make positive impacts on patients suffering from full or partial paralysis. Such arrays are implanted into the patient's cortical tissue and record extracellular potentials from nearby neurons, allowing the information encoded by the neuronal discharges to control external devices. While such systems perform well during acute recordings, they often fail to function reliably in clinically relevant chronic settings. Available evidence suggests that a major failure mode of electrode arrays is the brain tissue reaction against these implants, making the biocompatibility of implanted electrodes a primary concern in device design. This review presents the biological components and time course of the acute and chronic tissue reaction in brain tissue, analyses the brain tissue response of current electrode systems, and comments on the various material science and bioactive strategies undertaken by electrode designers to enhance electrode performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrical stimulation of excitable tissue: design of efficacious and safe protocols.

            The physical basis for electrical stimulation of excitable tissue, as used by electrophysiological researchers and clinicians in functional electrical stimulation, is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface. Faradaic and non-Faradaic charge transfer mechanisms are presented and contrasted. An electrical model of the electrode/tissue interface is given. The physical basis for the origin of electrode potentials is given. Various methods of controlling charge delivery during pulsing are presented. Electrochemical reversibility is discussed. Commonly used electrode materials and stimulation protocols are reviewed in terms of stimulation efficacy and safety. Principles of stimulation of excitable tissue are reviewed with emphasis on efficacy and safety. Mechanisms of damage to tissue and the electrode are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A physically transient form of silicon electronics.

              A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
                Bookmark

                Author and article information

                Journal
                10.3390/electronics2010001

                Comments

                Comment on this article