25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Expression analysis of the SG-SSPN complex in smooth muscle and endothelial cells of human umbilical cord vessels.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, participation of the sarcoglycan (SG)-sarcospan (SSPN) complex in the development of cardiomyopathy in patients with limb-girdle muscular dystrophy has been shown, and presence of the complex in smooth muscle may be important for the contraction/dilation process of vessels. However, there are few studies determining the SG-SSPN complex in vascular smooth muscle and endothelial cells of vessels. In this study, we analyzed by reverse transcriptase-polymerase chain reaction and immunofluorescence the expression of different components of the complex in vein/artery smooth muscle and endothelial cells of the human umbilical cord. By RNA analysis, we observed expression of alpha-, beta-, gamma-, delta-, epsilon-SG, and SSPN in smooth muscle cells. In endothelial cells, RNA expression was restricted to beta-, delta-, epsilon-SG, and SSPN. At protein level, we observed in smooth muscle the presence of beta-, delta-, epsilon-SG, and SSPN. In endothelial cells, immunostaining only evidenced the presence of epsilon-SG and SSPN. However, colocalization of SGs and SSPN with dystrophin and utrophin was noted. These results, interestingly, suggest that the SG-SSPN complex may either form with dystrophin or utrophin in smooth muscle cells, and with utrophin in endothelial cells. Additionally, we also observed in some smooth muscle regions the colocalization of the SG-SSPN complex with caveolin, with colocalization being more pronounced between epsilon-SG-SSPN and caveolin in endothelial cells.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice

            Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the α-sarcoglycan gene. To determine how α-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed α-sarcoglycan– deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy, showed ongoing muscle necrosis with age, a hallmark of the human disease. Sgca-null mice also revealed loss of sarcolemmal integrity, elevated serum levels of muscle enzymes, increased muscle masses, and changes in the generation of absolute force. Molecular analysis of Sgca-null mice demonstrated that the absence of α-sarcoglycan resulted in the complete loss of the sarcoglycan complex, sarcospan, and a disruption of α-dystroglycan association with membranes. In contrast, no change in the expression of ε-sarcoglycan (α-sarcoglycan homologue) was observed. Recombinant α-sarcoglycan adenovirus injection into Sgca-deficient muscles restored the sarcoglycan complex and sarcospan to the membrane. We propose that the sarcoglycan–sarcospan complex is requisite for stable association of α-dystroglycan with the sarcolemma. The Sgca-deficient mice will be a valuable model for elucidating the pathogenesis of sarcoglycan deficient limb-girdle muscular dystrophies and for the development of therapeutic strategies for this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex.

              The dystrophin associated proteins (DAPs) are good candidates for harboring primary mutations in the genetically heterogeneous autosomal recessive muscular dystrophies (ARMD). The transmembrane components of the DAPs can be separated into the dystroglycan and the sarcoglycan complexes. Here we report the isolation of cDNAs encoding the 43 kD sarcoglycan protein beta-sarcoglycan (A3b) and the localization of the human gene to chromosome 4q12. We describe a young girl with ARMD with truncating mutations on both alleles. Immunostaining of her muscle biopsy shows specific loss of the components of the sarcoglycan complex (beta-sarcoglycan, alpha-sarcoglycan (adhalin), and 35 kD sarcoglycan). Thus secondary destabilization of the sarcoglycan complex may be an important pathophysiological event in ARMD.
                Bookmark

                Author and article information

                Journal
                J. Vasc. Res.
                Journal of vascular research
                S. Karger AG
                1018-1172
                1018-1172
                December 8 2004
                : 42
                : 1
                Affiliations
                [1 ] Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, Mexico, D.F., Mexico.
                Article
                82528
                10.1159/000082528
                15583476
                a6f094a2-e4e1-404a-97c0-877cecdf9371
                History

                Comments

                Comment on this article