240
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008

      Environmental Health
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Heat Stroke

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heat-related and cold-related deaths in England and Wales: who is at risk?

            Despite the high burden from exposure to both hot and cold weather each year in England and Wales, there has been relatively little investigation on who is most at risk, resulting in uncertainties in informing government interventions. To determine the subgroups of the population that are most vulnerable to heat-related and cold-related mortality. Ecological time-series study of daily mortality in all regions of England and Wales between 1993 and 2003, with postcode linkage of individual deaths to a UK database of all care and nursing homes, and 2001 UK census small-area indicators. A risk of mortality was observed for both heat and cold exposure in all regions, with the strongest heat effects in London and strongest cold effects in the Eastern region. For all regions, a mean relative risk of 1.03 (95% confidence interval (CI) 1.02 to 1.03) was estimated per degree increase above the heat threshold, defined as the 95th centile of the temperature distribution in each region, and 1.06 (95% CI 1.05 to 1.06) per degree decrease below the cold threshold (set at the 5th centile). Elderly people, particularly those in nursing and care homes, were most vulnerable. The greatest risk of heat mortality was observed for respiratory and external causes, and in women, which remained after control for age. Vulnerability to either heat or cold was not modified by deprivation, except in rural populations where cold effects were slightly stronger in more deprived areas. Interventions to reduce vulnerability to both hot and cold weather should target all elderly people. Specific interventions should also be developed for people in nursing and care homes as heat illness is easily preventable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              International study of temperature, heat and urban mortality: the 'ISOTHURM' project.

              This study describes heat- and cold-related mortality in 12 urban populations in low- and middle-income countries, thereby extending knowledge of how diverse populations, in non-OECD countries, respond to temperature extremes. The cities were: Delhi, Monterrey, Mexico City, Chiang Mai, Bangkok, Salvador, São Paulo, Santiago, Cape Town, Ljubljana, Bucharest and Sofia. For each city, daily mortality was examined in relation to ambient temperature using autoregressive Poisson models (2- to 5-year series) adjusted for season, relative humidity, air pollution, day of week and public holidays. Most cities showed a U-shaped temperature-mortality relationship, with clear evidence of increasing death rates at colder temperatures in all cities except Ljubljana, Salvador and Delhi and with increasing heat in all cities except Chiang Mai and Cape Town. Estimates of the temperature threshold below which cold-related mortality began to increase ranged from 15 degrees C to 29 degrees C; the threshold for heat-related deaths ranged from 16 degrees C to 31 degrees C. Heat thresholds were generally higher in cities with warmer climates, while cold thresholds were unrelated to climate. Urban populations, in diverse geographic settings, experience increases in mortality due to both high and low temperatures. The effects of heat and cold vary depending on climate and non-climate factors such as the population disease profile and age structure. Although such populations will undergo some adaptation to increasing temperatures, many are likely to have substantial vulnerability to climate change. Additional research is needed to elucidate vulnerability within populations.
                Bookmark

                Author and article information

                Journal
                10.1186/1476-069X-8-40

                Comments

                Comment on this article