32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hippocampal Neurogenesis, Cognitive Deficits and Affective Disorder in Huntington's Disease

      Neural Plasticity
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington’s disease (HD) is a neurodegenerative disorder caused by a tandem repeat expansion encoding a polyglutamine tract in the huntingtin protein. HD involves progressive psychiatric, cognitive, and motor symptoms, the selective pathogenesis of which remains to be mechanistically elucidated. There are a range of different brain regions, including the cerebral cortex and striatum, known to be affected in HD, with evidence for hippocampal dysfunction accumulating in recent years. In this review we will focus on hippocampal abnormalities, in particular, deficits of adult neurogenesis. We will discuss potential molecular mechanisms mediating disrupted hippocampal neurogenesis, and how this deficit of cellular plasticity may in turn contribute to specific cognitive and affective symptoms that are prominent in HD. The generation of transgenic animal models of HD has greatly facilitated our understanding of disease mechanisms at molecular, cellular, and systems levels. Transgenic HD mice have been found to show progressive behavioral changes, including affective, cognitive, and motor abnormalities. The discovery, in multiple transgenic lines of HD mice, that adult hippocampal neurogenesis and synaptic plasticity is disrupted, may help explain specific aspects of cognitive and affective dysfunction. Furthermore, these mouse models have provided insight into potential molecular mediators of adult neurogenesis deficits, such as disrupted serotonergic and neurotrophin signaling. Finally, a number of environmental and pharmacological interventions which are known to enhance adult hippocampal neurogenesis have been found to have beneficial affective and cognitive effects in mouse models, suggesting common molecular targets which may have therapeutic utility for HD and related diseases.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Neurobiology of Depression

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.

            Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies demonstrate that chronic antidepressant treatment significantly increases the number of BrdU-labeled cells in the dentate gyrus and hilus of the hippocampus. Administration of several different classes of antidepressant, but not non-antidepressant, agents was found to increase BrdU-labeled cell number, indicating that this is a common and selective action of antidepressants. In addition, upregulation of the number of BrdU-labeled cells is observed after chronic, but not acute, treatment, consistent with the time course for the therapeutic action of antidepressants. Additional studies demonstrated that antidepressant treatment increases the proliferation of hippocampal cells and that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. These findings raise the possibility that increased cell proliferation and increased neuronal number may be a mechanism by which antidepressant treatment overcomes the stress-induced atrophy and loss of hippocampal neurons and may contribute to the therapeutic actions of antidepressant treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Running enhances neurogenesis, learning, and long-term potentiation in mice.

              Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning.
                Bookmark

                Author and article information

                Journal
                10.1155/2012/874387
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article