107
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

      Chemical Reviews
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

          Related collections

          Most cited references384

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Canonical sampling through velocity-rescaling

          We present a new molecular dynamics algorithm for sampling the canonical distribution. In this approach the velocities of all the particles are rescaled by a properly chosen random factor. The algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can still be defined that remains constant during the evolution. In numerical applications this quantity can be used to measure the accuracy of the sampling. We illustrate the properties of this new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its performance is excellent and largely independent on the thermostat parameter also with regard to the dynamic properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase-change materials for rewriteable data storage.

            Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Modeling solid-state chemistry: Interatomic potentials for multicomponent systems

              J Tersoff (1989)
                Bookmark

                Author and article information

                Journal
                27228560
                4919765
                10.1021/acs.chemrev.5b00744
                Unknown

                Chemistry
                Chemistry

                Comments

                Comment on this article